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ABSTRACT

Proteins function through interactions with other
molecules. Thus, the network of physical interac-
tions among proteins is of great interest to both
experimental and computational biologists. Here
we present structure-based predictions of 3387
binary and 1234 higher order protein complexes
in Saccharomyces cerevisiae involving 924 and
195 proteins, respectively. To generate candidate
complexes, comparative models of individual pro-
teins were built and combined together using
complexes of known structure as templates. These
candidate complexes were then assessed using a
statistical potential, derived from binary domain
interfaces in PIBASE (http://salilab.org/pibase).
The statistical potential discriminated a bench-
mark set of 100 interface structures from a set of
sequence-randomized negative examples with a
false positive rate of 3% and a true positive rate of
97%. Moreover, the predicted complexes were
also filtered using functional annotation and sub-
cellular localization data. The ability of the method
to select the correct binding mode among alternates
is demonstrated for three camelid VHH domain—
porcine a–amylase interactions. We also highlight
the prediction of co-complexed domain superfami-
lies that are not present in template complexes.
Through integration with MODBASE, the application
of the method to proteomes that are less well
characterized than that of S.cerevisiae will contri-
bute to expansion of the structural and functional
coverage of protein interaction space. The predicted
complexes are deposited in MODBASE (http://
salilab.org/modbase).

INTRODUCTION

Recent developments in high-throughput screening have
generated large datasets identifying protein complexes. The
Saccharomyces cerevisiae proteome has been especially
well characterized through yeast-two-hybrid (Y2H) (1,2)
and tandem affinity purification (TAP) experiments (3–5).
Experimentally observed interactions, resulting from both
high-throughput and traditional low-throughput methodo-
logies, are deposited in databases such as the Biomolecular
Interaction Network Database (BIND) (6) and the Database
of Interacting Proteins (DIP) (7).

Concomitant with these experimental advances, a spate of
computational techniques to predict protein–protein interac-
tions have also been developed. Several approaches based
on protein sequence, structure, function and genomic features
have been described (8). In an effort to reduce the predict-
ion errors, several methods integrate multiple types of
experimentally determined information and theoretical
considerations (9–11).

Structure-based methods have been developed for the pre-
diction of binary protein interactions. InterPreTS (12) uses a
statistical potential derived from known hetero-dimer struc-
tures and MULTIPROSPECTOR (13) relies on threading to
score pairs of proteins that are similar to binary interactions
of known structure. In addition to predicting new interactions,
structure-based methods can also annotate interactions that
have been previously observed experimentally. A recent
study used computational methods in conjunction with
experimentally determined complex compositions and elec-
tron density maps from negative-stain electron cryo-
microscopy to generate structural models of yeast complexes
(14). In a similar vein, structural knowledge has been used to
predict the domains that are most likely to mediate binary
protein interactions (15).

Here, we describe predictions of proteins that form com-
plexes in S.cerevisiae based on similarity to complexes
whose atomic structures have been solved experimentally.
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First, comparative models of conceivable complexes are built
and then assessed by a specialized statistical potential. The
high-confidence interactions can be additionally filtered by
examining orthogonal sources of information including sub-
cellular localization and functional annotation.

The current study is unique primarily in its prediction of
structural models for higher-order complexes as well as
homomeric complexes. Computational methods have been
developed to infer higher-order complexes from binary pro-
tein interaction networks (16,17), but they do not explicitly
use structural knowledge. Previous studies have also focused
primarily on the prediction of heterodimers, though homodi-
merization is biologically prevalent and functionally
significant (18). We show that the multiple structure-based
assessment steps, from the initial fold assignment, to the
interaction prediction, enables our method to achieve a higher
coverage, and presumably accuracy, than methods based
solely on sequence similarity.

We begin by describing the approach and benchmarking
the method. Predictions are then presented for proteins in
S.cerevisiae and validated against experimentally observed
complexes. We highlight the performance of the protocol in
the selection of the correct binding mode when multiple

template interface structures are available and discuss
newly predicted co-complexed superfamilies. Finally, we
conclude with a brief discussion of potential applications of
the method in light of the ultimate goal offull structural cov-
erage of interaction space.

METHODS

Prediction algorithm

Candidate complexes are first generated, then assessed and
finally filtered by orthogonal biological information (Figure 1a).

Candidate complex generation. Pairs of S. cerevisiae proteins
were identified as potential interaction partners if they were
assigned SCOP domains belonging to superfamilies for
which an interaction structure exists in PIBASE (Figure 1b)
(19). In some superfamilies, such as the ARM superfamily
(SCOP a.118.1), the lengths of the member domains vary
widely. Because alignments between structures of different
lengths are difficult, a threshold was placed on the relative
sizes of the target and template domains—the shorter of the
two domains must be at least 60% of the length of the longer
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Figure 1. Prediction logic overview. (a) Prediction flowchart. Groups of protein sequences modeled with SCOP domains observed to form a complex in PIBASE
are listed as candidate complexes. These candidate complexes are then assessed by a statistical potential. Interactions that score above a Z-score threshold are
filtered using sub-cellular localization and functional annotation. The resultant predictions are deposited in MODBASE. (b) Candidate complex generation.
Comparative models of target domains are structurally aligned to templates of known structure in PIBASE using the SALIGN module of MODELLER. Putative
interface residues are identified from the alignment. (c) Predicted complexes are merged if they contain different domains of a single target protein.
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domain. In addition, the target domains were required to be
aligned with the template domains in sufficient number of
positions such that the corresponding template residues
formed at least 50% of the template interface contacts.

Protein Data Bank (PDB) (20) structures that contained
more than two domains were used as templates for the predic-
tion of higher-order complexes with more than two proteins.
Target domains that were assessed to interact through the
interface modes in a given PDB structure were listed as can-
didate members of a complex. Each complex was then scored
with the worst of the Z-scores for the interacting domain pairs
it contained, as described below. This was done to provide a
conservative estimate of complex quality based on the lowest
scoring constituent inerface. Predicted complexes were
merged if they contained different domains of a single target
protein. In effect, the covalent link between the domains
served as a ‘bridge’ between predicted complexes that were
based on different templates (Figure 1c).

Assessment of candidate complexes. Each candidate interac-
tion pair was scored by assessing the agreement between
the target sequences and the template interface structure
using a statistical potential derived from binary interface
structures in PIBASE.

First, residue contacts across the interface were calculated
for the template interface and grouped into classes based on
the main chain or side chain participation of each residue.
Second, the MODBASE models of each candidate interaction
partner were structurally aligned against the corresponding
domains in the template interface using the SALIGN module
of MODELLER (21). Finally, the residue correspondences
defined by the alignments were used to score the candidate
partner sequences against the template interface contacts
using the statistical potential, as described below.

A Z-score was calculated to assess the significance of the
raw statistical potential score, by consideration of the mean
and standard deviation of the statistical potential scores for
1000 sequences where all amino acids in the target domain
sequences were shuffled. Sequence randomization has been
shown previously to perform comparably with a more physi-
cal model involving structural sampling in the context of fold
assessment (22).

Orthogonal biological information. Orthogonal biological
support for each predicted complex was provided by sub-
cellular localization and gene ontology functional annotation
of their components, obtained from the YeastGFP database
(23) and SGD (24), respectively. The number of shared loca-
lization and function terms were computed for both experi-
mental and predicted complexes. If all pairs of proteins in a
complex shared at least one function or localization term, the
complex was flagged as co-functioning or co-localized,
respectively.

Construction of statistical potentials

A series of statistical potentials was built using the binary
domain interfaces in PIBASE extracted from structures at
or above 2.5 s resolution, randomly excluding 100 bench-
mark interfaces. Twenty-four statistical potentials were built
using different values of three parameters: the contacting

atom types (main chain–main chain, main chain–side chain,
side chain–side chain or all), the relative location of the con-
tacting residues (inter- or intra-domain) and the distance
threshold for contact participation (4, 6 or 8 s):
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p that occurred within the distance threshold Ro was weighted
by cifa, the minimum of the fraction of total atoms (of the
type specified in the potential) in each residue that fell within
the distance threshold (Equation 1), and np, the number of
residues in the protein. This count for each residue type
pair was normalized by n

ðpÞ
ij , the total number of possible con-

tacts of that type in each protein, weighted by max(cifaij). In
the case of the inter-domain potential, n

ðpÞ
ij was computed by

taking into account the occurrence of each residue type in
each domain individually. Finally, the score for each residue
type pair was normalized by the sum of the scores observed
for all residue type pairs (Equation 2).

Benchmarking of statistical potentials

Performance on the benchmark set of 100 randomly selected
interface structures, that were excluded during construction of
the potentials, was used to compare the 24 statistical poten-
tials. Of these benchmark interfaces 84 occur between
domains from the same family. This is representative of all
interfaces in PIBASE, 8877 (15.5%) of which are between
domains from different families and 48 257 (84.5%) of
which are between domains from the same family. The
sequences of the benchmark interfaces were scored against
their structures and a Z-score was calculated as described
above. Receiver–operator curves (ROCs) were built to
describe the observed false-positive and true-positive rates
at different Z-score thresholds. ROCs were then integrated
to calculate the area under the curve (AUC). The AUC repre-
sents the probability that a classifier ranks a randomly chosen
positive instance higher than a randomly chosen negative
instance, with 0.5 corresponding to a random prediction, and
1 to a perfect classifier (25) (www.hpl.hp.com/techreports/
2003/HPL-2003-4.pdf)

To investigate the effect of variation in the benchmark set
on each of the ROCs, 20 jack-knife trials were performed
where 20 randomly selected structures were removed and
the ROCs recomputed using the remaining 80 structures.
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Standard deviations of the areas under the resulting ROCs
were then calculated.

Validation of complex prediction

The predicted interactions were validated in two ways. First,
the predicted S.cerevisiae complexes were compared with the
experimentally determined complexes in the BIND database
(6) and those reported recently by Gavin et al. (3) referred
to as Cellzome. The binary interactions were compared by
counting the overlap of the predictions with the interactions
in the BIND and Cellzome sets. The Cellzome set consisted
of pairs of proteins that were deemed highly reliable in form-
ing partnerships based on their computed ‘socio-affinity’
score (3).

Second, the higher order complexes were compared
between the predicted and experimental sets by counting
how many of the predicted complexes were equivalent to,
or were subcomplexes of, experimentally determined com-
plexes. Since the predictions are based on known structures,
the sizes of the predicted complexes are far smaller than those
obtained by biochemical methods such as tandem affinity
purification methods. For this reason, we elected not to use
a metric that explicitly penalizes size differences [e.g. the
metric defined in Ref. (16)].

Binding mode selection

The ability of the potential to select the proper binding mode
when multiple template interfaces of different orientation are
available was assessed. The test cases used were the struc-
tures of camelid VHH domains AMB7, AMD10 and AMD9
bound to porcine pancreatic a-amylase (PPA) (PDB codes
1kxt, 1kxv and 1kxq, respectively). All three modes were
evaluated for each VHH–PPA complex using the interface
statistical potential.

Data sources

The prediction algorithm uses three types of data: (i) target
protein sequences among which complexes are to be pre-
dicted, (ii) structures of protein complexes to be used as
templates, and (iii) a list of the locations and types of struc-
tural domains in the target and template proteins (Figure 1a).

Target proteins. S.cerevisiae protein sequences were obtained
from MODBASE, a relational database of annotated com-
parative protein structure models for all available protein
sequences matched to at least one known protein structure
(26). The models were calculated by MODPIPE (27), an
automated modeling pipeline that relies on MODELLER
for fold assignment, sequence–structure alignment, model
building and model assessment (21). S.cerevisiae proteins
(6600) were processed, resulting in 9464 models for 3440
sequences. A total of 2659 sequences had at least one reliable
model (5387 reliable models in total). A model is considered
reliable when the model score, derived from statistical poten-
tials, is higher than a cutoff of 0.7 (22). A reliable model has
>95% probability of having at least 30% of Ca atoms within
3.5 s of their correct positions. A total of 3376 sequences had
at least one reliable fold assignment (8935 reliable folds in
total). A fold assignment is considered reliable when the

model is based on a PSI-BLAST match to a template with
an E-value <0.0001.

Structural domain annotation. The domain definitions for
PDB structures were obtained from the SCOP database (ver
1.69) that classifies each domain using a four level hierarchy,
class, fold, superfamily and family (28). The location and
types of domains in the target protein sequences were then
predicted using the SCOP annotation of their MODBASE
templates, as follows. Domain boundaries were first assigned
based on the MODBASE alignment of each target protein to
its structural template. Each target domain was required to
have at least 70% of the residues in its template domain to
receive the domain assignment. Next, if the target domain
had >30% sequence identity to the template domain and the
MODBASE structural model was assessed to be reliable, the
target domain received the template’s SCOP classification at
the family level. If the sequence identity was <30% and a
reliable model was built or if the sequence identity was
>30% but MODBASE deemed only a reliable fold assign-
ment, the superfamily was assigned. The remaining domains
received the template domain’s SCOP classification at the
fold level, and were not used in the interaction prediction.

For those target proteins for which multiple models were
available in MODBASE, a tiling procedure combined the
domain assignments for each model into a non-overlapping
set of domain boundaries that maximized the coverage length
and classification detail in the SCOP hierarchy.

Template complexes. Structures of template complexes were
retrieved from PIBASE, a comprehensive relational database
of structurally defined protein interfaces (19). It currently
includes 209 961 structures of interactions between 2613
SCOP domain families. The ASTEROIDS component of
the SCOP ASTRAL compendium was used to cluster the
interfaces, reducing the computational expense of the predic-
tions (29). The ASTEROIDS alignments, available for SCOP
classes a–g, were used together with the interface contacts
stored in PIBASE to cluster all interface structures that shared
pairs of SCOP families. When at least 75% of the pairwise
residue contacts in one interface also occurred between resi-
dues that were aligned in another interface, the two interfaces
were merged into a single cluster. The clustering reduced the
79 428 domain interfaces between pairs of domains in the
SCOP classes a–g to 21 791 representative interfaces. These
interfaces were filtered using a threshold of at least 1000
interatomic contacts resulting in a set of interfaces of signifi-
cant size. Thresholds similar to this, which roughly
corresponds to a buried surface area of 400 A2, have been
used previously to filter crystallographic artifacts from
biologically relevant interfaces (30). The final set of template
binary interfaces contained 5275 structures, including both
intermolecular and intramolecular interfaces.

Technology

The prediction system was implemented as a Perl module and
an integrated set of Perl scripts, except for the inter-atomic
contacts calculator written in ANSI C (19). The SALIGN
module of MODELLER (21) was used to generate model
template alignments. The Perl DBI interface was used to
access the MODBASE and PIBASE MySQL databases
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(http://www.mysql.com). The calculations were done in a
parallel fashion on 50 3.0 GHz Pentium IV processors, taking
20 h for the yeast genome. The predictions are accessible via
the MODBASE web interface (http://salilab.org/modbase).

RESULTS

Benchmark

The statistical potentials were tested using the benchmark set
of 100 complexes, and their performance compared using
(ROCs) (Methods). The highest power of discriminating
between the native and non-native interfaces was achieved
by the statistical potential built from side chain–side chain
contacts across the interfaces at a threshold of 8 s, corres-
ponding to the extent of the first residue shell (Figure 2).
The ROC for this potential had an area under the curve
(AUC) of 0.993, and at the optimal Z-score threshold of
�1.7 had true positive and false positive rates of 97 and
3%, respectively. Clear performance trends were observed
for the parameters sampled in the potential construction.
The general trend of increased performance at the 8 s thres-
hold over the lower thresholds is likely due to a more com-
plete description of interactions within the first residue
shell. The inter-domain potential always performed better
than the corresponding intra-domain potential, when all
other parameters were equivalent (data not shown). The
side chain–side chain (SS) potential performed better than
the corresponding main chain–side chain (MS) potential,
which in turn performed better than the corresponding main
chain–main chain (MM) potential. At 6 and 8 s, the all
atom-type potential performed better than only the MM
potential. At 4 s, the all atom-type potential performed
better than both MS and MM potentials. The range of
performances, generatedby varying the other parameters

(i.e. atom type, inter- or intra-domain), was widest at the
4 s distance threshold and least at 8 s.

Jack-knife trials were performed to determine the effect of
variation in the benchmark set on the ROCs (Methods). The
AUC of the jack-knifed ROCs exhibited narrow distributions,
with the lowest standard deviation (0.002) achieved by the
inter-domain SS potential at 8 s, and the highest (0.02)
achieved by the intra-domain MM potential at 4 s. This
suggests the ROC analysis is robust to variations in the
benchmark set.

Here, the potentials were assessed using a benchmark set
of native interface structures. In the predictive setting, the
absolute performance of each potential will likely be
diminished due to errors in the comparative models. How-
ever, the relative performance of the different formulations,
as captured by the ROCs, remains a valid guide for selection
of the potential to use in the predictions.

Predictions

The best statistical potential, as determined above, was then
used to assess candidate interactions between S.cerevisiae
proteins. A total of 12 867 binary interactions that scored at
or below a Z-score threshold of �1.7 were predicted between
1390 S.cerevisiae proteins (Figure 3a). Next, the co-function
and co-localization filters were separately applied, reducing
the original 12 867 interactions to 6808 and 4606, respec-
tively. The combined co-localization and co-function filter
resulted in 3387 predictions. A total of 12 702 higher-order
complexes were also predicted at a Z-score threshold of
�1.7 between 589 proteins. Similar to the binary predictions,
the orthogonal filters reduced this number to 1234 complexes
between 195 proteins.

The predictions spanned the entire spectrum of target–
template sequence similarity (Figure 3b). This distribution
reflects both the comparative modeling procedure used to
build models of the individual proteins and the procedure
used to identify potential interaction templates. The mean
target–template sequence identity of the reliable models
built for S.cerevisiae proteins is 31%. Domains from different
families within the same superfamily, the SCOP level used to
identify potential interaction templates, often share <30%
sequence identity. Both of these factors influence the distribu-
tion of target–template identities observed for the predicted
interactions.

The fractions of predicted binary interactions that passed
the co-function (53%), co-localization (36%), and both co-
function and co-localization (26%) filters were similar to
the fractions for BIND interactions (39, 34 and 22%,
respectively). The Cellzome set more readily passed these
filters (65, 60 and 46%, respectively).

Validation

The predictions were then compared with known experi-
mental interactions, as deposited in the BIND database. Of
the 3387 predicted binary interactions that passed the com-
bined co-localization and co-function filter 270 overlapped
with known binary interactions. Of the 1234 predicted higher-
order complexes 8 were also found as subcomplexes of
experimental complexes.
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The enrichment of the unfiltered predictions with known
binary interactions begins to plateau at 0.15 around a
Z-score threshold of �3.5, with an enrichment value of
0.03 at the Z-score of �1.7 (Figure 4a). The predictions
that passed the separate localization and function filters
both reached a peak of 0.28 at a Z-score of �3.5. Both filters
produced enrichment values of 0.06 at the Z-score threshold
of �1.7. The enrichment of the predictions that passed the
combined co-localization and co-function filter exhibited a
higher peak of 0.36 at the Z-score of �3.5. At the Z-score

threshold of �1.7, the combined filter produced an enrich-
ment of 0.08, a >3-fold increase compared with the unfiltered
predictions.

Comparison with other computational methods

The performance of the method in predicting binary interact-
ions is comparable with similar structure-based methods that
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Figure 3. S.cerevisiae predictions. (a) Predictions of binary and higher-order
complexes filtered by subcellular localization and annotated function. The
homomeric fraction of interactions is listed in parenthesis. (b) Average
sequence identity of predicted interaction partners to template interacting
domains versus Z-score. The predictions shown were scored with Z-score
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Figure 4. Experimental overlap of S.cerevisiae predictions. (a) The
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sub-cellular localization and annotated function.
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have been applied previously to S.cerevisiae on a genomic
scale. Here, an overlap of 270 binary interactions is observed
between the set of 3387 (8%) predictions and 19 424 (1.4%)
experimentally observed binary interactions. Of 7321 (5%)
interactions predicted by threading 374 occurred in a set of
78 930 (0.4%) experimentally determined yeast interactions
(31). An overlap of 59 predicted interactions with an experi-
mental set of 2590 (2.3%) interactions was obtained by inter-
face model assessment (12).

To compare it directly with a method that does not use
structural assessment, PSI-BLAST (32) was used to
predict binary interactions by detecting similarities between
S.cerevisiae proteins and the template complexes. An overlap
of 929 binary interactions was observed between the set of
36 790 (2.5%) predictions and the 19 424 (4.8%) experimen-
tally observed binary interactions.

Alternate binding modes

The ability of the algorithm to correctly select the native
binding mode when alternate templates are available was
tested. The native binding mode was correctly selected for
all three VHH domains interacting with porcine pancreatic
a-amylase (Figure 5). In addition, the statistical potential
scores that were computed for the native binding modes

exhibit the same rank-order as the affinity measured experi-
mentally by total internal reflectance (33).

Co-complexed domains

An extension process merged predicted complexes containing
different domains of a single target protein (Figure 1c). This
process predicted 279 pairs of co-complexed SCOP domain
families that were not present in the structures of template
complexes. The comparison with experimental complexes
was done at the superfamily level, as many of the domains
in the experimental complexes were assigned domains that
were classified only to this level in the SCOP hierarchy
(Figure 6).

DISCUSSION

We presented a method to predict protein complex composi-
tions by generating comparative models of candidate com-
plexes based on sequence similarity to structurally known
complexes followed by model assessment (Figure 1). We
applied the method to the S.cerevisiae proteome (Figure 3)
and compared the predicted complexes with experimental
data (Figures 4 and 6). We further tested the method by dis-
tinguishing between multiple template binding modes
(Figure 5). We now discuss the observed performance and
describe the limitations of the algorithm. We close by dis-
cussing the information gained in the present study and its
applications to increasing structural description of protein
interactions.

Accuracy

Because a large set of true negative interactions is not avail-
able, only the positives, or predicted interactions, can be com-
pared between experiment and predictions. This limitation
restricts the validation of the predictions because if the
Z-score threshold is loosened, maximal overlap can be
achieved at the expense of the false positive rate. However,
the false positive rate cannot be counted with certainty, as
false positives cannot be distinguished from false negatives
in the experimental datasets, which can be quite high (34).
Similar validation problems are encountered when testing

(b)

(a)

Figure 5. (a and b) Selection among alternate binding modes. Camelid VHH
domains AMB7 (orange), AMD10 (magenta) and AMD9 (blue) bind to
porcine pancreatic a-amylase (PPA, gray surface) through three distinct
binding modes (PDB codes 1kxt, 1kxv, and 1kxq, respectively). All three
modes were evaluated for each VHH–PPA complex using the interface
statistical potential. The Z-scores are presented along with the raw score in
parenthesis. Dissociation constants measured by total internal reflectance
(IAsys) were obtained from literature (33). Image created by PyMOL (Delano
Scientific, 2002).

Figure 6. Co-complexed domain superfamilies. The pairs of co-complexed
superfamilies observed in the BIND and Cellzome complexes are compared
with the direct interactions in the PDB, co-complexed pairs in the PDB and
the predicted co-complexed pairs resulting from the complex extension
procedure.
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protein ligand docking algorithms. Here, a measure related to
the enrichment factor used in protein ligand docking was
applied (Figure 4a).

The overlap observed between the predicted and experi-
mentally observed complexes is comparable with that
between different experimental procedures (34). Of the
3387 predicted binary interactions 270 and of the 1234 pre-
dicted higher-order complexes 8 were present in the BIND
or Cellzome datasets (Figure 4).

This overlap is a result of several factors. First, by con-
struction our method is restricted to protein interactions for
which structural templates exist. For this reason, our method
is also biased towards complexes that are stable enough to
be amenable to structure determination, whereas the Y2H
method that populates most of the high-throughput entries
in BIND, is biased towards transient interactions (34).
Second, many PDB entries do not contain complete domains
for both partners (e.g. SH3 domain–peptide complexes) and
were thus not considered as templates in the current
prediction protocol. Finally, the challenge faced in predicting
binary interactions increases combinatorially for higher-order
complexes.

Errors in the predicted interactions are also a result of
errors that may arise in each stage of the comparative model-
ing procedure, including fold assignment, alignment and
structure modeling. Comparative modeling errors vary in
type and magnitude with the sequence identity between the
template and target proteins (35). At very low sequence
identities, the fold type of the target sequence may be
assigned erroneously. When the proper fold has been
assigned, misalignments may still occur due to gaps and
insertions in the target sequence. Given the correct alignment,
main chain distortions may still occur due to differences in
the target and template backbone structure. At the finest
resolution, side chains may suffer from errors in packing.
These comparative modeling errors contribute to both false
positives and false negatives in the predicted interactions.

The use of sub-cellular localization data and functional
annotation as filters for the predictions increased their overlap
with experimental complexes, as compared with the unfil-
tered predictions. This finding is in agreement with previous
observations that combining multiple sources of information
improves the accuracy of function annotation as well as inter-
action prediction (9–11). Our method easily allows for the
use of additional biological filters when other types of
data are available, such as synthetic gene lethality (36),
co-expression (37), and so on. This incremental addition of
orthogonal information is also necessary to more accurately
represent the conditions in the cellular milieu, where the
propensity of two protein structures to interact is not limited
only by the physical chemistry of the interaction, but also by
higher levels of biological regulation, including compartmen-
talization, expression, degradation, abundance and so on.
Depending on the application, the user may decide to apply
different biological filters.

Importance of structure

The majority (98.6%) of the filtered binary interactions as
well as the subset that overlapped with experimentally
observed interactions (86.9%) were based on templates

sharing <80% sequence identity, a threshold established
previously for reliable transfer of a known interaction to a
putative interaction between homologous proteins (Figure 3b)
(38). This distribution highlights the advantage garnered by
the use of structure and the importance of a structure-based
assessment.

One such example is the experimentally observed interac-
tion between LSM2 and LSM7 that was predicted here based
on structural similarity to the 14mer complex of SmAP3, an
Sm-like protein from the archae Pyrobaculum aerophilum
(PDB 1m5q). The sequence identities of LSM2 and LSM7
to SmAP3 are 23 and 2.4%, respectively. While interface
templates with higher sequence identities were available
(highest identities of 20.7% for LSM2 and 32.1% for
LSM7 to chains G and A of PDB 1jbm, respectively),
the1m5q-based model was scored most favorably by the sta-
tistical potential. Another example of a known interaction
predicted using a distantly related template interaction is
that between the delta (GCD2) and beta (GCD7) subunits
of the translation initiation factor eIF2B, predicted based on
similarity to the structure of Ypr118w, a methylthioribose-1-
phosphate isomerase related to regulatory eIF2B subunits.
The prediction was made based on sequence similarities of
16 and 15%, respectively.

For comparison, a naı̈ve search for putative interaction
partners was performed by using PSI-BLAST to detect simi-
larities between yeast proteins and the template complexes.
As expected, this approach, which is equivalent to the
current method performed without the structural assessment,
predicted more binary interactions that have been observed
previously by experiment (929) than the structure-based
method (270). However, the naı̈ve approach likely suffers
from a higher false positive rate, as can be observed in the
lower enrichment of its predictions with experimentally
observed interactions (2.5%) than the structure-based method
(8%) (Methods).

Alternative binding modes

The ability of the algorithm to choose the correct binding
mode when multiple templates are available was illustrated
by evaluation of three alternative binding modes that have
been structurally characterized between porcine pancreatic
a-amylase and camelid VHH domains (Figure 5). The
algorithm successfully chose the native binding mode for
all three VHH domains. In addition, the statistical potential
scores that were computed for the native binding modes
exhibit the same rank order as the affinity of the interactions
measured by total internal reflectance (33).

However, this example is also cautionary in that each VHH
domain had one non-native mode that scored below the
optimal Z-score threshold, though only the native modes
produced negative raw scores (Results). In a large-scale
predictive setting, if the native binding mode was not
available as a template, the VHH domain would have been
predicted to interact with PPA, but through an incorrect
binding mode. This example illustrates a connection between
the observed performance and the underlying scoring scheme.
However, a systematic analysis of alternative binding modes
in protein interactions, and the ability of our method to dis-
tinguish them, remains a useful goal for the future.
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Network specificities

A more difficult test of the method is the prediction of
specificities within interaction networks between homologous
proteins. To address this problem, the method was applied to
predict the specificities within the epidermal growth factor
receptor (EGFR) and tumor necrosis factor b (TNFb) net-
works of ligand receptor interactions (data not shown). In
both networks the method failed to recapitulate known bind-
ing preferences. Specifically, the rank order of the Z-scores
for the assessed pairs did not correlate with known binding
preferences.

This error was not surprising. The randomization scheme
employed in the Z-score assessment of the raw statistical
potential score simulated alternative binding modes. In
contrast, it was not designed or tested to determine speci-
ficities. This task is difficult as large training datasets of
this type are not available.

Rather than predicting specificities, the method presented
here is applicable as a first pass for genome-wide predictions
of protein complexes. The resulting predictions are then
suitable for a follow up with more accurate computational
methods, which on their own are not feasible on a large scale.

Extension of known co-complexed
domain superfamilies

Large protein complexes present unique challenges to
structural characterization. Direct physical interactions have
been experimentally observed between domains from 671
pairs of different SCOP superfamilies (excluding homo-
family interactions). Domains from 1555 pairs of different
superfamilies have been observed to co-complex in the
same PDB entry. Of these pairs 420 have also been observed
in biochemical complexes. Through an extension process that
merged predicted complexes containing different domains of
a single target protein, an additional 100 pairs of super-
families were predicted to be co-complexed (Figure 1c and
6). Of these newly predicted pairs 43 were also found in
the experimental complexes. This extension procedure will
be especially informative when applied to proteins from
higher organisms with greater domain architecture complex-
ity than S.cerevisiae (39).

Future directions

We presented a tool for the prediction and assessment of the
composition and structure of protein complexes. The results
suggest that the algorithm may in practice be useful in con-
junction with additional biological data, such as protein loca-
lization and functional annotation. Through its integration
with MODBASE, the method is applicable, in an automated
fashion, to all genomes with sequences that are amenable to
comparative protein structure modeling. The method will be
especially informative for proteomes of species that have not
been characterized to the extent of S.cerevisiae, either
because the genomes have only been sequenced recently or
because the organisms are difficult to analyze experimentally.

In addition to proposing new protein complexes that have
not been observed previously, the present study also enables a
more rigorous, structure-based, analysis of experimental
protein interaction data. For instance, the system could be

used to distinguish complexes from temporally distinct inter-
actions by assessing whether the interactions are sterically
compatible or exclusive (40). The predictions may also
prove useful in guiding experiments that aim to probe the
interactions, such as various site-directed mutagenesis and
interaction design studies.

Comparative protein structure modeling is increasingly
used to help bridge the resolution gap between electron
cryo-microscopy (cryo-EM) density maps and atomic protein
structures (41). Fitting of protein and protein domain models
into density maps of large assemblies is already common, but
depending on the resolution, the information encoded in the
map is often insufficient for an unambiguous determination
of the positions and orientations of the individual proteins
(42). Models of the complexes predicted here may provide
additional restraints for a more accurate fitting of proteins
into large complexes studied by cryo-EM and electron
cryo-tomography (14,43).

As the number and size of experimentally determined
structures of protein complexes increase, the number of
complexes that can be predicted and modeled using these
structures as templates increases correspondingly, expanding
the structural coverage of protein interaction space (44).
In combination with other computational methods, the pre-
sented method will allow biologists to harness interaction
information that has been experimentally determined for
similar systems to inform their hypotheses or experiments.
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