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Small molecules that modulate protein–protein interactions are of great interest for chemical

biology and therapeutics. Here I present a structure-based approach to predict ‘bi-functional’ sites

able to bind both small molecule ligands and proteins, in proteins of unknown structure.

First, I develop a homology-based annotation method that transfers binding sites of known

three-dimensional structure onto protein sequences, predicting residues in ligand and protein

binding sites with estimated true positive rates of 98% and 88%, respectively, at 1% false positive

rates. Applying this method to the human proteome predicts 8463 proteins with bi-functional

residues and correctly recovers the targets of known interaction modulators. Proteins with

significantly (p o 0.01) more bi-functional residues than expected were found to be enriched in

regulatory and depleted in metabolism functions. Finally, I demonstrate the utility of the method

by describing examples of predicted overlap and evidence of their biological and therapeutic

relevance. The results suggest that combining the structures of known binding sites with

established fold detection algorithms can predict regions of protein–protein interfaces that are

amenable to small molecule modulation. Open-source software and the results for several

complete proteomes are available at http://pibase.janelia.org/homolobind.

Introduction

Small molecules that disrupt or stabilize protein–protein inter-

actions can serve as chemical tools to dissect cellular signaling

networks and drugs to treat disease.1,2 However, modulating

interactions with small molecules is currently more challenging

than traditional drug targets on single proteins, due to their

unique physicochemical and structural properties. In contrast

to small molecule binding sites, the average protein–protein

interface is large, flat, and often lacks detectable cavities that

typically bind small molecules.3 Despite these differences,

recent structural and biophysical studies suggest that protein

interactions may be more feasible targets than previously

thought. For example, a small number of energetic ‘hot-spots’

often contribute disproportionately to the binding energetics

of protein–protein interactions.4,5 This observation suggests

that small molecule disruption of a few key residues could

efficiently compete with protein interaction partners. In

addition, protein interfaces can be flexible and contain cryptic

cavities that are not present in the structure of a protein–

protein complex, but can bind to small molecules.6 This

observation suggests that even seemingly featureless interfaces

may contain ‘druggable’ binding sites.2,7

A combination of experimental2 and computational8

methods have been used to identify interaction modulators.

For traditional targets, computational approaches for small

molecule discovery typically begin with a crystal structure or

homology model of the target protein. Next, a target site

is identified using either pocket detection algorithms or the

known location of an endogenous substrate. Finally, docking

algorithms are used to virtually screen a small molecule library

and identify candidate ligands. Virtual screening has been

widely used to discover small molecule ligands, and recent

work suggests it can be complementary to experimental high-

throughput screens.9 This overall computational framework

has also been applied, with some adaptations, to protein

interaction targets.8 For example, the presence of cryptic

cavities at protein interfaces has inspired the use of molecular

dynamics simulations to sample the conformational space

around protein–protein interfaces for transient druggable

pockets that are then subjected to virtual screening.10

The identification of druggable sites on interaction targets is

particularly challenging for two reasons. First, endogenous

substrate binding sites, often used as starting points for

traditional targets, are not typically available.3 Second, the

flexible nature of protein interfaces can hide cryptic cavities in

crystal structures of the target protein complex. Here I present

an approach to predict druggable binding sites at protein

interfaces, in proteins of unknown structure, by using

structural information from homologs.

This approach builds on three related observations. First,

proteins often physically sample conformational space

in the same direction and magnitude as the conformational

variability observed between homologs.11 This observation

has been exploited in protein structure modeling and design

procedures,12–14 and suggests that binding sites in homologous

structures may complement molecular dynamics sampling for

identifying cryptic druggable sites. Second, protein homologs

often use similar surface regions to interact with their protein

interaction partners.15,16 This observation has been useful in

predicting binding sites for proteins of unknown function.16,17

Third, identifying ‘bi-functional’ positions that bind both
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ligands and proteins within families of protein structures

recovers the targets of known interaction modulators,

and can be used to predict the biological effects of small

molecules.18 Here, I extend this approach to proteins of

unknown structure, with the aim of predicting druggable

interface regions that are suitable for follow-up with

higher resolution, but more computationally demanding,

methods.

I first describe a method to predict bi-functional sites in

protein sequences of unknown structure and benchmark its

performance on binding sites of known structure. Next, I use

this method to predict bi-functional sites in several complete

proteomes and examine their compositional and functional

properties. I close by discussing the relevance of the results for

small molecule modulation of protein interactions.

Results

Binding site prediction algorithm

The prediction algorithm uses a binding site library organized

by domain family to annotate a target set of protein sequences

annotated with domains (Fig. 1). Briefly, template small

molecule (250–1000 Da) and protein binding sites of

known three-dimensional structure were obtained from the

LIGBASE19 and PIBASE20 databases, respectively (details in

Materials and methods). These binding sites were projected

onto SCOP domain family alignments obtained from the

ASTRAL compendium.21,22 A subsequent redundancy

removal procedure yielded 27152 small molecule, 2147 peptide,

23 308 inter-molecular domain, and 8254 intra-molecular

domain binding sites on 20037, 1875, 19846, and 7470 domains,

respectively.

The boundaries and classification of domains in the target

protein sequences were obtained from the SUPERFAMILY

resource, which uses a hidden Markov model library of SCOP

structural domains to annotate complete genomes.23 The

ASTRAL alignments, described above, were then used to

transfer template binding sites onto the SUPERFAMILY

domains in the target protein sequences. The binding sites

were transferred at sequence identity thresholds estimated

to predict residues with a 1% false positive rate, using a

benchmarking strategy described next.

Assessing the coverage and accuracy of the method

The performance of the method was characterized in terms of

coverage and accuracy by cross-validating the domain family

alignments annotated with binding sites. Coverage refers to

the fraction of known binding residues that are aligned to at

least one template binding site, regardless of sequence identity.

Accuracy refers to the true and false positive rates of the

method in predicting these covered residues, at varying thresholds

of sequence identity. The coverage was estimated by determining

the fraction of binding residues in each domain family that

was aligned to a binding residue in at least one other family

member. A range of coverage was observed, with an average

of 88%, 71%, 74%, and 84% for ligand, peptide, inter-molecular

domain, and intra-molecular domain binding residues

(Fig. 2A). These estimates establish the maximum fraction of

residues in known binding sites that would be predicted by a

homology transfer procedure with a perfect scoring function.

Next, I estimated the actual accuracy of the homology transfer

procedure presented here, which uses the binding-site sequence

identity as a scoring function.

The accuracy of the method was established by first

determining sequence identity thresholds for each template

binding site that would achieve a 1% false positive rate, as

estimated on a simulated set of negative binding residues (see

Materials and methods). A wide distribution of sequence

identity thresholds was observed, with an average of 31%

for ligand, 31% for peptide, 25% for inter-molecular domain,

and 24% for intra-molecular domain binding sites (Fig. 2B).

The corresponding true positive rates were then estimated in a

family-wide fashion by determining the number of known

(and covered) binding residues that passed the sequence

identity thresholds determined above to achieve 1% false

positive rates (Fig. 2C and 2D). The average true positive

rates were estimated to be 98% for ligand, 89% for peptide,

88% for inter-molecular domain, and 91% for intra-molecular

domain binding residues. These estimates are in concordance

with published benchmarks of homology-transfer procedures.17

Bi-functional sites predicted in the human proteome

Having estimated the accuracy of the method, I used it to

predict binding sites in the ENSEMBL human proteome

containing 46 591 proteins. Of the 64 225 domains identified

by SUPERFAMILY, significant similarities to ligand or

protein binding sites were detected in 45 541 domains

(Table 1); 10 561 of these domains contained residues with

significant similarity to both ligand and protein binding sites.

I next quantified the amino acid residue propensities of the

predicted binding sites to facilitate comparison with bi-

functional positions of known structure and previously described

energetic hot-spots (eqn (2)). The predicted bi-functional

residues exhibited a distinct amino acid residue propensity

compared to predicted mono-functional residues (Fig. 3A;

Table 2). The bi-functional residue propensities are mostly

similar to those described previously for bi-functional

positions of known structure.18 The most significant differences

are that bi-functional positions of known structure exhibited

enrichment for tryptophan and histidine, and near background

levels of cysteine.
Fig. 1 Overview of the method to predict overlapping ligand and

protein binding sites.



This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst., 2011, 7, 545–557 547

The bi-functional residue propensities are also similar in

several respects to previously described energetic ‘hot-spots’.5,25

Hot-spot residues have been found to exhibit the following

compositional trends: (1) enrichment for tryptophan, arginine

and tyrosine, (2) under-representation of leucine, serine,

threonine and valine, (3) over-abundance of isoleucine relative

to leucine, and (4) preference for aspartate and asparagine

over glutamate and glutamine.25 The predicted bi-functional

residues exhibit all of these trends except for near-background

levels of tryptophan and only slight enrichment for arginine

(Fig. 3A).

To quantify the levels of overlap predicted between ligand

and protein binding sites, an odds ratio was computed for each

protein that considers the number of residues predicted to bind

ligands (nl), proteins (np), or both ligands and proteins (nb), as

well as the number of solvent-exposed residues (ns):

overlap ¼ nb=ns
ðnp=nsÞ � ðnl=nsÞ

¼ nbns

nlnp
ð1Þ

A residue was considered solvent-exposed if at least one

homolog of known structure exhibited a side chain solvent

exposure of greater than 7% (MODELLER v9.4).26 The

statistical significance (Fisher’s exact one-tailed p-value) of

the observed overlap between predicted ligand and protein

binding sites was assessed against a null model where binding

site residues were placed independently at exposed residues.

3516 proteins were found to contain significantly (p o 0.01)

more bi-functional residues than expected by chance; 624

proteins had fewer bi-functional residues (Fig. 3B; Table 3).

Functional significance of bi-functional residues

To explore the biological relevance of bi-functional residues, I

next analyzed the functions of proteins with significantly

greater or fewer such residues than expected by chance, using

SUPERFAMILY function assignments of their component

domains (eqn (3)).23 The proteins with greater overlap were

most enriched in regulation and depleted in metabolism and

information functions. Proteins with less overlap than

expected were enriched in metabolism and depleted in intra-

cellular and regulation processes (Fig. 3C; Table 4).

These results largely agree with the functional analysis of

bi-functional positions of known 3D structure, although the

Fig. 2 The coverage and accuracy of predicted binding residues.

Coverage refers to the fraction of known binding residues in each

family that align to a template binding site in a homologous protein;

accuracy refers to the true and false positive rates in predicting these

covered residues. (a) The distributions of binding site residue coverage

per domain family is shown for each kind of binding site. (b) The

distributions of sequence identity thresholds (per template binding

site) estimated to achieve a maximum false positive rate of 1% and

(c) the resulting true positive rates in predicting binding residues in

each domain family. (d) The distribution of 95% confidence interval

widths for true positive rates, estimated using Bayesian bootstrap with

500 replicates.24

Table 1 Binding site residues predicted in the human proteome

Type # Proteins
# Domains
(# Families) # Residues

Input data
Complete proteome 46 591 — (—) 23 540 008
Annotated domains 30 712 64 225 (1857) 9 119 046

Predicted binding sites
Peptide 8091 11 868 (200) 516 862
Domain 20 990 42 753 (1142) 2 166 227
Ligand 10 605 13 074 (550) 511 993
Bi-functional 8463 10 561 (442) 294 448
All binding sites 22 916 45 541 (1239) 2 499 286
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propensity values presented here are more statistically significant

due to a larger sample size.18 The trends for the regulation and

metabolism functions were similarly found in the previous

analysis of protein families. The only significant difference is

that the previous analysis found overlapping proteins to

be enriched in intracellular processes, while that category is

near-background in the present analysis. One possible reason

for these differences is the level of analyses: the previous

analysis was performed at the level of individual domains in

contrast to the results presented here at the protein level,

which consider all component domains.

These functional trends were further explored by predicting

bi-functional residues in several other species. Similar trends

were observed for the metabolism and regulation functions in

nearly all the other proteomes tested: Mus musculus,

Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces

cerevisiae, Escherichia coli, and the NCBI viral sequence set

(Table 4). The sole exception was the reversal of the regulatory

function in E. coli, with overlapping proteins exhibiting a

depletion, while non-overlapping proteins were enriched.

Examples of overlapping binding site predictions

Recovery of known interaction modulators. To validate the

accuracy of the transfer procedure, the method was applied to

targets of known interaction modulators to ensure the correct

target region was identified. The binding site library itself was

previously shown18 to include known interaction modulators

discussed in a recent review article.2 Indeed, all of these

binding sites were also correctly transferred onto their target

protein sequences by HOMOLOBIND (Fig. 4). This result

suggests that the homology transfer procedure performed as

expected.

To determine the predictive utility of the method, I next

examined examples of predicted overlap between ligand and

protein binding sites. Below, I describe four examples of

therapeutically relevant targets and small molecules. These

examples involve protein–protein interactions from several

distinct functional classes, including enzyme–substrate/inhibitor,

regulatory, and structural interactions.

DNA Topoisomerase IIA (human). DNA Topoisomerase

IIA (topoIIa; ENSP00000269577) enables processing of coiled

genomic DNA by inducing a double-strand break in one

molecule, facilitating passage of another intact molecule through

the break, and re-ligating the break.27 HOMOLOBIND

predicted topoIIA bi-functional residues using the structures

of the natural small molecules radicicol bound to Sulfolobus

shibatae topoisomerase VI,27 and novobiocin bound

to E. coli topoisomerase IV,28 which overlapped with a

homodimeric interface predicted from Saccharomyces cerevisiae

topoisomerase II29 (Fig. 5A). These bi-functional residues

represent the most statistically significant overlap predicted

between ligand and protein binding sites predicted for a human

protein (Table 3). This prediction is consistent with a study

published after the template structures became available that

demonstrated the inhibition of human topoIIa by radicicol,30

and much earlier work showing novobioicin inhibition of calf

thymus topoisomerase II.31

TopoIIa belongs to a broad family of proteins that share

a homologous ATPase domain and includes several

chemotherapeutic targets: bacterial DNA gyrase, topoisomerase

IV, and topoisomerase VI are antibiotic targets; topoIIa and

Hsp-90 are antineoplastic targets.27 Small molecules have

shown cross-reactivity between these family members, and

this feature has been exploited to discover inhibitors. For

example, radicicol was initially discovered as an antifungal

antibiotic and was later shown to inhibit both Hsp-90

and mammalian topoIIa.30 Novobiocin, a natural product

with antibacterial and weak anti-mammalian topoisomerase

Table 2 The residue type propensity at residues predicted to bind both ligands and proteins, bind ligands, or bind proteins in comparison to all
solvent-exposed residues. Bootstrap resampling with 1000 replicates was performed to compute 95% confidence intervals of the residue type
propensities (eqn (2)). Propensities are considered significant (indicated by an asterisk) at the a = 0.05 level if their confidence intervals do not
include the value 1

Amino acid

Propensity at
ligand-only
residues

(95% confidence
interval)

Propensity at
protein-only
residues

(95% confidence
interval)

Propensity at
bi-functional
residues

(95% confidence
interval)

A 1.006 (0.99, 1.022) 0.891 *(0.884, 0.896) 0.875 *(0.861, 0.889)
C 0.974 *(0.949, 1) 1.147 *(1.137, 1.157) 0.753 *(0.732, 0.77)
D 0.878 *(0.862, 0.896) 1.044 *(1.037, 1.051) 1.111 *(1.095, 1.128)
E 0.675 *(0.663, 0.69) 1.085 *(1.08, 1.092) 0.971 *(0.958, 0.986)
F 1.311 *(1.287, 1.334) 0.912 *(0.904, 0.918) 1.093 *(1.074, 1.11)
G 1.392 *(1.372, 1.411) 1.049 *(1.042, 1.054) 1.235 *(1.218, 1.25)
H 1.058 *(1.031, 1.084) 1.121 *(1.111, 1.131) 1.003 (0.982, 1.026)
I 1.16 *(1.139, 1.177) 0.874 *(0.867, 0.88) 1.047 *(1.032, 1.063)
K 0.83 *(0.815, 0.845) 1.055 *(1.049, 1.062) 1.061 *(1.047, 1.077)
L 1.017 *(1.004, 1.029) 0.838 *(0.834, 0.842) 0.904 *(0.894, 0.914)
M 1.309 *(1.277, 1.342) 0.879 *(0.871, 0.891) 1.247 *(1.218, 1.277)
N 0.978 *(0.956, 0.999) 1.012 *(1.002, 1.018) 0.911 *(0.891, 0.927)
P 0.773 *(0.757, 0.79) 1.089 *(1.082, 1.097) 0.795 *(0.781, 0.81)
Q 0.697 *(0.681, 0.715) 1.064 *(1.057, 1.072) 0.814 *(0.799, 0.83)
R 0.899 *(0.883, 0.917) 1.094 *(1.088, 1.102) 1.128 *(1.113, 1.145)
S 0.98 *(0.964, 0.996) 1.027 *(1.022, 1.033) 0.903 *(0.891, 0.916)
T 1.054 *(1.036, 1.073) 1.082 *(1.076, 1.09) 0.977 *(0.963, 0.992)
V 1.018 *(1.002, 1.033) 0.894 *(0.889, 0.899) 0.98 *(0.966, 0.994)
W 1.081 *(1.047, 1.116) 1.096 *(1.083, 1.111) 0.958 *(0.93, 0.989)
Y 1.159 *(1.134, 1.182) 1.076 *(1.066, 1.084) 1.415 *(1.391, 1.437)
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activity, has been derivatized to yield selective Hsp-90

inhibitors.32 Both of these compounds act by binding to the

ATP substrate pocket. In addition, radicicol prevents

ATP-mediated topoisomerase VI homo-dimerization;27 a

coumarin antibiotic structurally related to novobiocin

interferes with Hsp90 dimerization.33 This example illustrates

the utility of distant homologs for predicting binding sites: The

folds are shared across prokaryotic and eukaryotic species,

and the ligands exhibit cross-reactivity across this evolutionary

range. It also indicates that even well-established drug classes –

novobiocin was discovered over 50 years ago34 – that target

traditional targets like enzyme active sites, may also disrupt

protein interactions.

Inhibitors of apoptosis proteins family (IAP; human). IAP

proteins inhibit caspase enzymes involved in apoptosis,

are themselves negatively regulated by proteins including

Smac/DIABLO, and are often over-expressed or translocated

in cancers. The family includes eight human proteins that all

share at least one baculovirus IAP repeat (BIR) domain.35

HOMOLOBIND predicted bi-functional residues on several

IAPS, including cellular IAP1 (cIAP1; ENSP00000227758)

and cIAP2 (ENSP00000263464), using structures of X-linked

IAP (XIAP) bound to synthetic small molecules, full-length

and peptide fragments of Smac, and a target caspase (Fig. 5B).

These predicted bi-functional residues are likely to be relevant

targets of small molecule inhibition, as pan-IAP cross-

reactivity has been observed.36 This cross-reactivity is also

therapeutically relevant, as it was recently shown that inhibition

of both XIAP and cIAP1/cIAP2 is necessary to effectively

induce apoptosis.37

This example highlights the issue of ligand/family member

specificity. XIAP, cIAP1, and cIAP2 all have three BIR

domains, each of which interacts with different proteins. For

example, XIAP interacts with caspase-9 through its BIR3

domain and with capsases-3 and -7 through its BIR2

domain.38 Most small molecules have been designed against

BIR3, although at least one study has targeted BIR2. No small

molecules have been described that bind to the BIR1 domain.

Cross-reactivity has also been observed between XIAP BIR2

and BIR3.36 As expected, HOMOLOBIND predicted

bi-functional residues for all three BIR domains of cIAP1,

using mostly the same template ligand, peptide, and domain–

domain binding sites. The prediction of binding specificity

between homologous domains (both within the same protein

and in different proteins) is largely beyond the scope of the

method, which only aims to predict the binding site.

Calmodulin (human). Calmodulin is a calcium-binding

protein that regulates many enzymes and signal transduction

processes. HOMOLOBIND predicted bi-functional residues

on calmodulin using the structures of rat calmodulin bound to

an enzyme substrate, endothelial nitric oxide synthase (NOS),

and cow calmodulin bound to KAR-2, an indole alkaloid

derived from vinblastine (Fig. 5C).39 This structural overlap

provides a mechanistic basis for the observation that vinblastine

and other anti-microtubular agents reduce nitric oxide

production.40 The endothelial and neuronal forms of NOS

are thought to be activated by binding to calmodulin–Ca2+

complexes. Disruption of this interaction by indole

alkaloids, such as KAR2, would reduce NOS activity. In fact,

Fig. 3 The composition, frequency, and functional propensity of

bi-functional residues predicted in the human proteome. (a) The residue

type propensity (eqn (2)) at residues predicted to bind both ligands and

proteins (black; n = 294448), bind ligands (cyan; n = 217545), or bind

proteins (orange; n = 1987498) in comparison to all solvent-exposed

residues (grey; n = 7236755). (b) The overlap observed between

predicted ligand and protein binding residues. The maximum observed

overlap score is 15.938 (not shown). (c) The function propensities of

proteins with significantly (p o 0.01) higher (n = 3516) or lower

(n = 624) number of bi-functional positions than expected by chance

(eqn (3)). The statistical significance of the residue and function propensities

was estimated by a bootstrap resampling procedure (Table 2 and 4).



550 Mol. BioSyst., 2011, 7, 545–557 This journal is c The Royal Society of Chemistry 2011

Vinca alkaloids have been shown to bind calmodulin with an

affinity comparable to microtubules, thought to be their

primary therapeutic target.41

B-cell lymphoma-2 protein family (Bcl-2; human). Bcl-2 is a

family of both pro- and anti-apoptotic proteins that form or

disrupt heterodimers in response to death signals.42 High levels

of the anti-apoptotic proteins are associated with resistance to

cancer chemotherapy. HOMOLOBIND predicted bi-functional

residues for several Bcl-2 family members including Myeloid

cell leukemia-1 protein (Mcl-1) using the structure of small

molecules bound to Bcl-2 and Bcl-XL and peptide binding sites

observed for Mcl-1 and predicted using structures of Bcl-2,

Bcl-w, and Bcl-XL (Fig. 5D).

Several small molecules have been synthesized with varying

selectivity for the anti-apoptotic Bcl-2 members including

Bcl-2 itself, Bcl-XL, and Mcl-1. Recent studies suggest that

both the Mcl-1/Bcl2A1 and the Bcl-2/Bcl-XL/Bcl-w sub-

families of anti-apoptotic proteins must be inhibited for

effective induction of cancer cell apoptosis.42 Given the

structural similarity between Bcl-2 members, and the observed

cross-reactivity of small molecules,43 the predicted Mcl-1

bi-functional residues are likely relevant targets.

This example again highlights the issue of specificity. The

Bcl-2 ligand used to predict the ligand binding site on Mcl-1 is

an acyl-sulfonamide compound designed to bind both Bcl-2

and Bcl-XL.
44 Although this compound was not tested against

Mcl-1, an earlier study testing a similar compound found weak

Mcl-1 binding.45 Recently, small molecules have been designed

with activity against multiple anti-apoptotic Bcl-2 members,

including Bcl-2, Bcl-XL, Bcl-w, and Mcl-1.46 As mentioned

previously, the method presented here does not aim to predict

actual ligands, as this requires estimation of binding affinities

using explicit structural models at a much higher resolution

than the fold detection sequence alignments used here.

Discussion

I developed a homology transfer algorithm, HOMOLOBIND,

to predict binding site residues (Fig. 1), characterized its

coverage and accuracy (Fig. 2), used it to predict overlapping

ligand and protein binding sites in the human proteome

(Table 1 and 3), described the compositional and functional

properties of these bi-functional residues (Fig. 3; Table 2 and 4),

and illustrated the utility of the results for identifying protein

interface regions amenable to small molecule modulation

(Fig. 4 and 5). I now describe possible extensions to the

method and follow-up analyses to further characterize the

relevance of predicted bi-functional residues for modulating

protein interactions.

Homology transfer of binding sites has been extensively

demonstrated in a variety of systems and applied to the

annotation of protein sequences, structures, and their inter-

actions.17,47–49 Beyond its specific application to the prediction

of bi-functional residues, HOMOLOBIND is a systematically

benchmarked method that integrates several well-established

protein structure resources to facilitate comprehensive prediction

of binding sites in complete proteomes. The underlying structural

domain assignment algorithm (SUPERFAMILY) has been

rigorously benchmarked, the domain definitions and classification

(SCOP) are considered gold standard, and the binding site

libraries (PIBASE, LIGBASE) are comprehensive and regularly

updated. The automated nature of the method makes it

suitable for large-scale studies of binding sites. As illustrated

above, it can be run on a genomic scale using either the

pre-computed genomic domain assignments available from

Table 3 The ten human proteins with the most significantly (p o 0.01) higher or lower number of bi-functional residues than expected by chance

Most significant overlapping proteins

ID Protein Overlap p-Value (left)

ENSP00000269577 Topoisomerase (DNA) IIa 6.093 2.2 � 10�16

ENSP00000264998 Transferrin 5.130 2.2 � 10�16

ENSP00000261266 Protein tyrosine phosphatase, receptor type, B 4.895 2.2 � 10�16

ENSP00000359932 TNNI3 interacting kinase 4.809 2.2 � 10�16

ENSP00000264331 Topoisomerase (DNA) IIb 4.501 2.2 � 10�16

ENSP00000231751 Lactotransferrin 4.495 2.2 � 10�16

ENSP00000370076 Baculoviral IAP repeat-containing protein 1 4.124 2.2 � 10�16

ENSP00000371935 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 3.681 2.2 � 10�16

ENSP00000261714 Bleomycin hydrolase 3.537 2.2 � 10�16

ENSP00000319684 Tensin 2 3.497 2.2 � 10�16

Most significant non-overlapping proteins

ID Protein Overlap p-Value (right)

ENSP00000223423 Prostaglandin–endoperoxide synthase 1 0.094 9.78 � 10�16

ENSP00000376187 Discs, large homolog 1 0.000 2.771 � 10�15

ENSP00000353047 MAGUK p55 subfamily member 4 0.000 2.787 � 10�11

ENSP00000295550 Collagen, type VI, a3 0.000 8.347 � 10�11

ENSP00000381234 Cystathionine-b-synthase 0.464 3.899 � 10�10

ENSP00000241052 Catalase 0.416 1.125 � 10�9

ENSP00000361049 30-Phosphoadenosine 50-phosphosulfate synthase 2 0.176 6.262 � 10�9

ENSP00000376708 von Willebrand factor A domain containing 2 0.000 3.026 � 10�8

ENSP00000359210 Dihydropyrimidine dehydrogenase 0.679 3.728 � 10�8

ENSP00000367937 Lysyl-tRNA synthetase 0.405 3.848 � 10�8
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SUPERFAMILY, or domain assignments made for a newly

sequenced genome using SUPERFAMILY software.

Relevance for modulating protein interactions

The primary goal in developing HOMOLOBIND has been

for use as a proteome-wide first-pass to identify potentially

druggable protein interface residues. Small molecules that

have successfully targeted protein interactions fall into three

broad categories: (1) competitive inhibitors that prevent the

binding of a protein by competing with the binding site, (2)

allosteric inhibitors that bind to a region distinct from the

protein interface but still inhibit protein interaction, possibly

through a conformational change, and (3) interfacial inhibitors

that bind to an interface and stabilize the protein complex in a

functionally inactive state.3,50 The method presented here is of

Table 4 The function propensities of proteins with significantly (p o 0.01) higher or lower number of predicted bi-functional residues than
expected by chance. Bootstrap resampling with 1000 replicates was performed to compute 95% confidence intervals of the function propensities
(eqn (3)). Propensities are considered significant (indicated by an asterisk) at the a= 0.05 level if their confidence intervals do not include the value
1

Function

Propensity of proteins
with significantly low
bi-functional positions

(95% confidence
interval)

Propensity of proteins
with significantly high
bi-functional positions

(95% confidence
interval)

Homo sapiens (n = 624) (n = 3516)
Information 1.187 (0.929, 1.442) 0.795 *(0.689, 0.897)
Metabolism 1.528 *(1.394, 1.658) 0.445 *(0.412, 0.479)
Extracellular processes 1.075 *(1.004, 1.154) 1.184 *(1.143, 1.227)
Intracellular processes 0.381 *(0.305, 0.465) 1.002 (0.932, 1.072)
Regulation 0.807 *(0.722, 0.89) 1.271 *(1.219, 1.322)
General 0.559 *(0.489, 0.64) 1.009 (0.959, 1.062)
Other 3.91 *(3.302, 4.509) 0.507 *(0.415, 0.609)

Drosophila melanogaster (n = 338) (n = 1902)
Information 1.645 *(1.201, 2.191) 0.939 (0.771, 1.141)
Metabolism 1.93 *(1.764, 2.08) 0.575 *(0.527, 0.628)
Extracellular processes 0.59 *(0.41, 0.787) 0.693 *(0.605, 0.788)
Intracellular processes 0.142 *(0.077, 0.215) 1.238 *(1.152, 1.341)
Regulation 0.778 *(0.648, 0.905) 1.456 *(1.365, 1.553)
General 0.903 (0.776, 1.047) 1.087 *(1.012, 1.168)
Other 0.417 *(0.154, 0.729) 0.551 *(0.401, 0.725)

Caenorhabditis elegans (n = 303) (n = 1678)
Information 1.345 (0.913, 1.852) 0.661 *(0.507, 0.833)
Metabolism 1.916 *(1.74, 2.109) 0.482 *(0.436, 0.532)
Extracellular processes 1.521 *(1.28, 1.771) 1.082 (0.972, 1.19)
Intracellular processes 0.364 *(0.224, 0.503) 1.085 (0.963, 1.212)
Regulation 0.464 *(0.365, 0.558) 1.438 *(1.358, 1.521)
General 0.658 *(0.513, 0.796) 1.022 (0.937, 1.113)
Other 0.129 *(0, 0.341) 0.74 *(0.545, 0.992)

Saccharomyces cerevisiae (n = 124) (n = 493)
Information 1.118 (0.667, 1.643) 0.794 (0.599, 1.033)
Metabolism 1.672 *(1.497, 1.855) 0.563 *(0.493, 0.644)
Extracellular processes 0 (0, 1) 1.248 (0, Inf)
Intracellular processes 0.305 *(0.125, 0.53) 1.205 *(1.012, 1.442)
Regulation 0.649 *(0.359, 0.991) 1.733 *(1.429, 2.072)
General 0.503 *(0.351, 0.675) 1.324 *(1.185, 1.484)
Other 0.396 (0, 1.524) 0.699 (0.22, 1.469)

Escherichia coli (n = 117) (n = 288)
Information 1.181 (0.642, 1.78) 0.835 (0.537, 1.207)
Metabolism 1.088 (0.945, 1.231) 0.681 *(0.595, 0.769)
Extracellular processes 0 (0, 1) 0 (0, 1)
Intracellular processes 0.755 (0.41, 1.153) 1.134 (0.831, 1.464)
Regulation 1.869 *(1.252, 2.583) 0.627 *(0.388, 0.928)
General 0.609 *(0.417, 0.824) 1.789 *(1.553, 2.028)
Other 0.696 (0, 1.625) 0.798 (0.277, 1.651)

NCBI viral sequence set (n = 203) (n = 2324)
Information 0.546 *(0.4, 0.697) 1.119 *(1.052, 1.182)
Metabolism 1.444 *(1.242, 1.664) 0.491 *(0.445, 0.535)
Extracellular processes 0.146 *(0, 0.515) 0.274 *(0.17, 0.403)
Intracellular processes 1.043 (0.758, 1.339) 1.34 *(1.225, 1.468)
Regulation 0.826 (0.479, 1.206) 1.554 *(1.382, 1.75)
General 1.128 (0.935, 1.347) 1.178 *(1.105, 1.253)
Other 1.079 (0.788, 1.382) 0.858 *(0.774, 0.953)
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course only applicable to competitive and interfacial inhibitors,

because it relies on overlapping protein and ligand binding

sites. Predicting druggable allosteric sites requires the

identification of allosteric pathways that can communicate

conformational changes from a distal site to the interface.51

The bi-functional residues predicted with HOMOLOBIND

are suitable candidates for evaluation with higher resolution

computational methods that are also more computationally

expensive.8 For example, a first step would be to build an

explicit structural model of the target protein by comparative

modeling26 and high resolution refinement techniques.52 Next,

flexible docking algorithms could be used to predict small

molecules that bind to the predicted bi-functional region.53

Finally, computationally validated targets and predicted

Fig. 4 The method correctly recovers the targets of known interaction modulators.2 Predicted binding sites are depicted as colored tick-marks

within larger boxes representing SUPERFAMILY domain annotations. Template ligand and protein binding sites are shown as ribbon diagrams,

produced by UCSF Chimera.
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ligands could then be evaluated using the extensive repertoire

of experimental biophysical and biochemical techniques used

to identify and evaluate interaction inhibitors.3

Experimental high-throughput screening data, such as

bioassay data available through ChEMBL (http://www.ebi.ac.uk/

chembldb/) and PubChem,54 might also be useful in evaluating

the predictions. In the most simple usage, bioassay data could

be searched to determine if ligands whose template binding

sites were used to annotate a target protein sequence in fact

bind to the target. Although clearly confirmatory, this scenario

is likely to occur in only a few cases, as HOMOLOBIND only

predicts binding sites rather than actual ligands, due to the

Fig. 5 Examples of overlap predicted between ligand and protein binding sites on human proteins. Predicted binding sites are depicted as colored

tick-marks within larger boxes representing SUPERFAMILY domain annotations. Template ligand and protein binding sites are shown as ribbon

diagrams, produced by UCSF Chimera. Full-length topoIIA is nearly 1600 residues; only the first 400 residues, where binding sites were predicted,

are shown.
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complexity and difficulty in predicting ligand specificity.

However, even in the absence of experimental data for a

particular ligand, the bioactivity profiles for the target and

template protein sequences might be useful as a pharmacological

similarity measure, to complement the sequence similarity

thresholds that HOMOLOBIND uses to make the binding

site predictions. The (untested) hypothesis is that if a pair of

proteins bind similar or identical ligands, then binding sites

transferred by homology from one to the other protein are

likely to be correct. For example, several Mcl-1 inhibitors in

PubChem also demonstrate activity against both Bcl-2 and

Bcl-XL (e.g., CIDs 406171 and 1002248). Although these

cross-reactive compounds don’t include the actual ligands

used for the HOMOLOBIND prediction, this cross-reactivity

gives more confidence in the Mcl-1 binding site predicted by

homology from Bcl-2 (Fig. 5D). The concept of ligand-based

protein similarity has been successfully used to develop

statistical models of polypharmacology and to predict

off-target effects of drugs.55,56

Future directions

The main limit of the method’s coverage, as with any

homology-based method, is its reliance on homologous

template binding sites of known structure. Recent work

suggests that remote structural neighbors beyond the family

or superfamily levels can provide useful information for

predicting binding sites.16 More generally, tools that identify

local structural similarity rather than full-length domain

similarity could further harness available binding site

structures.57 However, even at the current domain family level

of similarity detection, the coverage and accuracy of the

method will naturally increase as the binding site library

is updated to reflect newly determined three-dimensional

structures of binding sites.

Besides predictions for individual proteins, the proteome-wide

compositional and functional properties of bi-functional

residues, and the similar functional trends observed across a

wide phylogenetic range, suggest that these residues are a

biologically relevant phenomena (Fig. 3A and C; Table 2

and 4). Analyzing their biophysical properties could further

clarify their relevance for modulating protein interactions.

In particular, the relationship of bi-functional residues to

energetic hot-spot residues remains an open question. The

predicted bi-functional residues described here, as well as the

structurally characterized bi-functional positions reported

previously,18 exhibit residue propensities similar in

many ways to energetic hot-spots (Fig. 3A).5,25 Comparing

HOMOLOBIND predictions to experimentally observed58

and computationally predicted hot-spots59–61 will establish

how frequently bi-functional residues are also energetic

hot-spots.

Another property that has been observed at successfully

targeted protein interfaces is that the conformation ‘captured’

by a small molecule is often distinct from that involved in the

protein–protein interaction.6,10 The flexibility of bi-functional

residues can be investigated using temperature factors from

crystallographically determined structures, order parameters

of structures determined by nuclear magnetic resonance

spectroscopy, or through molecular dynamics simulations. If

a clear difference in flexibility is observed at bi-functional

residues, this feature might provide an additional means to

predict and evaluate the relevance of bi-functional residues. At

the extreme of flexibility, the past decade has seen a growing

number of studies that demonstrate the importance of intrinsic

disorder in protein interaction networks.62 Tools that

have been developed to predict protein binding residues in

disordered proteins could shed light on the occurrence of

bi-functional residues in disordered regions.63

The distinctive features of bi-functional residues, such as

their residue propensities, suggest an alternative template-

independent approach for their prediction. Previous studies

have explored the utility of structural, physicochemical, and

evolutionary features for predicting protein binding sites

directly from sequence or structure.64 A similar approach

might be useful for predicting bi-functional sites in proteins

whose structures are unknown, do not have detectable

similarity to a protein of known structure, or for which

template binding sites are not available. Although the predictive

accuracy of these feature-based methods remains to be

explored in the context of bi-functional positions, such a

method would be complementary to homology- and physics-

based predictions.

In summary, I have presented a method that aims to

maximize the utility of experimentally determined protein

structures for identifying potentially druggable regions of

protein–protein interfaces. The method is implemented in

open-source software that integrates with well-established

protein structure resources. The results provide a protein structure

resource for targeting interactions and is complementary

to a growing number of computational methods that

catalog, characterize, and predict small molecule interaction

modulators.8,10,65–70

Materials and methods

Binding site library

The binding-site library contains small molecule ligand,

peptide, and protein domain binding sites of known three-

dimensional structure. These sites were extracted from

LIGBASE19 and PIBASE,20 comprehensive databases of

binding sites observed in the Protein Data Bank (PDB), as

previously described.18

Protein binding sites. Residues in domain–domain and

domain–peptide binding sites were obtained from PIBASE

v20080820 based on domain boundaries and classifications

from SCOP v1.73.21 Peptides were defined as those chains at

least 5 amino acid residues long that were not classified by

SCOP or were classified in the ‘peptide or fragment’ SCOP

class. Binding sites were defined as residues containing at least

one non-hydrogen atom within 5 Å of the interacting domain

or peptide. Domain–domain interfaces were filtered using a

threshold of at least 500 inter-atomic contacts at a distance

threshold of 5 Å (B500 Å2 buried surface area), to remove

small interfaces that are often crystallographic artifacts. A

minimum domain participation of 5 residues was also imposed

on domain–peptide interactions to remove small interfaces.
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Ligand binding sites. Ligand binding sites were obtained

from LIGBASE,19 defined as residues with at least one non-

hydrogen atom within 5 Å of the ligand. By default, ligands

are restricted to PDB HETERO groups with molecular

weights between 250–1000 Da, as this range removes

crystallographic buffers and small ions present in many PDB

entries, and also encompasses most orally administered drugs.

Molecular weights were computed from the MDL formatted

descriptions of the ligand structures in the MSD Ligand

Chemistry dictionary.71

Binding site library. The binding sites were mapped onto

domain family alignments from the ASTRAL compendium,

covering SCOP classes ‘a’ through ‘g’ (all-a, all-b, a/b, a+b,
multidomain a and b, membrane, and small proteins).22

Binding sites that shared more than 90% of their corresponding

alignment positions were grouped together and a representative

was chosen randomly. This procedure reduced the dataset

from 30 458 ligand, 4553 peptide, 81 014 inter-molecular

domain, and 35 042 intra-molecular domain binding sites on

22 463, 3845, 51 847, 29 317 domains to the final template

library of 27 152 ligand, 2147 peptide, 23 308 inter-molecular

domain, and 8254 intra-molecular domain binding sites on

20 037, 1875, 19 846, and 7470 domains, respectively. Binding

site similarity was computed as: (alignment positions shared

by the two binding sites)/(positions in either binding site). The

clustering was done with respect to alignment position, rather

than amino acid identity, to achieve a conservative representation

of structural diversity. The practical utility of the redundancy

removal procedure was to reduce the computational expense

of benchmarking and performing the homology transfer

procedure described below.

Homology-transfer of binding sites

The binding sites are transferred to target protein sequences in

two steps. First, family-level domain assignments are obtained

for the target sequences from SUPERFAMILY (v 1.73).23 For

each domain assignment, SUPERFAMILY provides an

alignment of the target sequence to a SCOP domain of known

structure. This alignment is combined with the ASTRAL

alignment of the corresponding domain family. Next, the

binding sites that were previously mapped onto these

ASTRAL alignments are transferred onto the target

sequences. The sequence identity of the target sequence to

the binding site template is computed across the putative

binding site. Sequence identity thresholds are then imposed

on the transferred binding sites. These thresholds are calibrated

through a statistical analysis of the template binding site

library, described below, to predict binding site residues with

an estimated false positive rate r1%.

The procedure is implemented in a Perl program,

HOMOLOBIND, that is licensed under GPL v3 and runs

on a single CPU or a Sun Grid Engine computing cluster. The

program takes as input a SUPERFAMILY assignment file

describing the domains found in a set of target protein

sequences. The output is a list of target residues with

similarities to a template binding site. HOMOLOBIND

can also generate diagrams depicting the locations of

predicted binding sites relative to the SUPERFAMILY domain

architecture of a target protein. Annotation of all human

proteins with a SUPERFAMILY domain assignment

(n = 30 712) takes 2.5 h on a single 2 GHz Xeon processor.

HOMOLOBIND is compatible with the current SUPER-

FAMILY version (v 1.73), and its binding site library will be

updated as SUPERFAMILY transitions to newer versions

of SCOP.

Assessment of prediction coverage and accuracy

All analysis was done using the non-redundant set of binding

sites that are used as templates. The coverage was assessed in a

family-specific manner by counting the fraction of ligand-

binding residues that were aligned to another family member

with a corresponding binding site residue, irrespective of the

sequence identity. This analysis establishes the scope of the

method.

The accuracy of the method was characterized by the false

and true positive rates achieved as a function of the sequence

identity threshold used to transfer binding sites from templates

onto target sequences. Transferring binding sites without

imposing a sequence identity threshold would yield a low false

negative rate, correctly identifying all (correctly aligned)

binding residues, but at the cost of a high false positive rate.

At the other extreme of a 100% sequence identity threshold,

all predicted residues would be correct (low false positive rate),

but many real binding site residues would be omitted (high

false negative rate). Ideally, these error rates would be

estimated using a benchmark set of protein sequences where

all individual residues are systematically known either to be

involved (positive set) or not involved (negative set) in binding

ligands and proteins. Such an ideal benchmark set is of course

not available because of the vast number of possible ligand

and protein binding partners and the currently sparse experi-

mental sampling of this space.

The best source for positive binding residues are the PDB

structures used in the template library. A negative set of

residues that are not involved in binding is more difficult to

construct because the absence of binding in the PDB for a

particular protein residue does not rule out all possible binding

events. An artificial negative set was constructed using a

sequence-shuffling method originally developed for fold

recognition,72 and later applied to protein–protein interaction

prediction,73 that performs comparably to a more physical

model of structural sampling. A set of negative binding

residues was defined for each template binding site by creating

shuffled sequences (n = 10000) from the family-wide alignment,

while preserving gap structure, and selecting those shuffled

residues in alignment columns corresponding to the actual

template binding site. These negative binding residues were

used during benchmarking to estimate the false positive rates

achieved for each template binding site, at varying sequence

identity thresholds.

Briefly, sequence identity thresholds were first established

for each binding site that achieved a 1% residue-level false

positive rate (FPR) and the resulting true positive rates (TPR)

were estimated for each family by cross-validation. FPR was

calculated by counting the number of negative binding

residues that passed progressively higher sequence identity



556 Mol. BioSyst., 2011, 7, 545–557 This journal is c The Royal Society of Chemistry 2011

thresholds. The lowest sequence identity value that achieved a

FPR r 1% was chosen as the threshold. If such a threshold

was not identified for a binding site, it was not used as

a template. This happened for 18 ligand, 0 peptide, 20

inter-molecular domain, and 8 intra-molecular domain

binding sites.

These binding site-specific sequence identity thresholds were

then used to estimate the corresponding TPR in a family-wide

fashion by cross-validation of the template binding sites.

Briefly, each sequence in the family with a binding site was

annotated using the other template binding sites in the family

at the previously established sequence identity thresholds.

Known binding residues that were aligned to template binding

residues were considered the positive set: those that passed the

sequence identity threshold were considered true positives, and

the remainder considered false negatives. Confidence intervals

for the TPR were estimated using Bayesian bootstrap resampling

with 500 replicates.24

Computing residue type propensities

Residue type propensities were calculated for ligand binding-

only, protein binding-only, and bi-functional residues relative

to all solvent-exposed residues:

propensity ðamino acidiÞ ¼
ntypeðiÞ
ntype

�
nexposedðiÞ
nexposed

ð2Þ

Computing function propensities

Function propensities were calculated for proteins with

significantly fewer or greater number of bi-functional residues

than expected, relative to all proteins predicted to have both

ligand and protein binding sites. The propensity of function

i was computed by considering the fraction of domains in each

protein set assigned function i by SUPERFAMILY:

propensity ðset; funciÞ ¼
nsetðfunciÞ

nset

�
nallðfunciÞ

nall
ð3Þ

The significance of both residue type and function propensity

values were estimated using a non-parameteric bootstrap

resampling procedure with 1000 replicates to compute 95%

confidence intervals.
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