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Abstract. The anatomy of many neural circuits is
being characterized with increasing resolution, but their
molecular properties remain mostly unknown. Here, we
characterize gene expression patterns in distinct neural
cell types of the Drosophila visual system using genetic
lines to access individual cell types, the TAPIN-seq
method to measure their transcriptomes, and a prob-
abilistic method to interpret these measurements. We
used these tools to build a resource of high-resolution
transcriptomes for 100 driver lines covering 67 cell types,
available at http://www.opticlobe.com. Combining
these transcriptomes with recently reported connec-
tomes helps characterize how information is transmitted
and processed across a range of scales, from individual
synapses to circuit pathways. We describe examples
that include identifying neurotransmitters, including
cases of co-release, generating functional hypotheses
based on receptor expression, as well as identifying
strong commonalities between different cell types.
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Highlights

1. Transcriptomes reveal transmitters and receptors
expressed in Drosophila visual neurons

2. Tandem affinity purification of intact nuclei (TAPIN)
enables neuronal genomics

3. TAPIN-seq and genetic drivers establish transcrip-
tomes of 67 Drosophila cell types

4. Probabilistic modeling simplifies interpretation of
large transcriptome catalogs

Introduction

The anatomy of neural circuits is being characterized with
increasing resolution and throughput, in part following a
dramatic increase in the size of circuits amenable to de-
tailed electron microscopy reconstruction (Swanson and
Lichtman, 2016) and the development of genetic tools
to access individual cell types (Luo et al., 2018). These
efforts reveal anatomy at unprecedented detail, but not
the molecular properties of cells. In principle, the genes
expressed in each cell of a neural circuit should serve
as a molecular proxy for cell physiology. However, most
genomic efforts have focused on surveying neuronal di-
versity rather than characterizing circuit function (Ecker
et al., 2017). To develop a resource exploring molec-
ular correlates of circuit function, here we use an ap-
proach that genetically targets cell types within a well-
characterized brain region to measure high-quality tran-
scriptomes that can be integrated with connectomes.
Drosophila affords an ideal system to study neural cir-
cuits in detail, as both excellent genetic tools and high
resolution connectomes are available. Here we focus
on the repeating columnar circuits of the visual system,
found in the optic lobes, a widely used model for study-
ing circuit development and function with an extensive
genetic toolbox and well-described anatomy (Figure 1A;
Nériec and Desplan, 2016; Silies et al., 2014; Apitz and
Salecker, 2014). This network begins with photoreceptor
neurons and contains several layers of connected neu-
rons which process incoming luminance signals into mul-
tiple parallel streams of visual information (Figure 1B).
Many of its cellular components have been described by
light microscopy, including classical Golgi studies (Fis-
chbach and Dittrich, 1989) and recent analyses using ge-
netic methods (Morante and Desplan, 2008; Otsuna and
Ito, 2006; Nern et al., 2015; Wu et al., 2016). Electron
microscopy reconstruction work has characterized the
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synaptic connections of many optic lobe neurons (Mein-
ertzhagen and O’Neil, 1991; Meinertzhagen and Sorra,
2001; Rivera-Alba et al., 2011; Takemura et al., 2013;
Takemura et al., 2015; Takemura et al., 2017; Shinomiya
et al.,, 2019). Comparative studies have also explored
the evolution of this ancient brain structure (Strausfeld,
2009). Despite this wealth of information, many of its fun-
damental properties remain unknown, including the neu-
rotransmitters used at many of its synapses.

Measuring the genes expressed in specific cells of the
brain is challenging due to its compact and complex or-
ganization. RNA sequencing (RNA-seq) addresses this
challenge by profiling either single cells or genetically la-
beled populations of cells (Ecker et al., 2017). The latter
approach requires genetic tools to access individual cell
types but provides more direct access to cells of inter-
ests than sampling of unmarked single cells, especially
for sparse cell types. Profiling identified cell types pro-
vides a direct link to previous work on the anatomy and
physiology of those cell types. Cell type-specific drivers
also facilitate follow-up experiments, for example evalu-
ating the role of individual genes in individual cells. In
Drosophila, large collections of GAL4 driver lines (Jenett
etal., 2012; Tirian and Dickson, 2017) and the possibility
to further refine these patterns with intersectional meth-
ods such as split-GAL4 (Luan et al., 2006; Dionne et al.,
2018) enable genetic access to many neuronal popula-
tions (see, for example, Tuthill et al., 2013; Aso et al.,
2014; Wu et al., 2016). We therefore chose the genetic,
rather than single cell, approach to build a genomics re-
source to explore circuit function.

We previously developed an Isolation of Nuclei
Tagged in a specific Cell Type (INTACT) method (Deal
and Henikoff, 2010) to measure transcriptomes and
epigenomes of genetically-marked neuronal populations
in Drosophila (Henry et al., 2012) and mouse (Mo et al.,
2015). Here, we develop a tandem affinity purification
of INTACT nuclei (TAPIN) method with increased speci-
ficity, sensitivity, and throughput. By combining this
method with an extensive set of new driver lines with
predominant expression in specific cell types and a new
probabilistic method to interpret transcript abundance,
we build a resource of high-quality transcriptomes for one
hundred driver lines. We selected drivers that expressed
in cell types constituting the lamina (Fischbach and Dit-
trich, 1989; Tuthill et al., 2013; Edwards et al., 2012) as
well as the major cell types of the circuits that compute
the direction of visual motion (Mauss et al., 2017) (Fig-
ure 1C). We further included neuronal populations in two
central brain regions, the mushroom body and central
complex, primarily to serve as informative outgroups.

By profiling these driver lines, we develop an expres-
sion catalog for 67 Drosophila cell types as well as sev-
eral broader cell populations. Through validation experi-
ments and comparisons to the literature we demonstrate
that this resource is useful both for identifying individual
genes expressed in specific cell types and for reveal-

ing broader patterns such as the expression of all mem-
bers of a gene family across many cell types. As an ex-
ample, we describe the expression of neurotransmitters
and their receptors and use this information to interpret
synaptic connectivity. For example, we unexpectedly
found that the R8 photoreceptors express acetylcholine
in addition to histamine and show that this apparent co-
transmitter phenotype is further supported by differential
expression of neurotransmitter receptors in R8 postsy-
naptic partners. Our results demonstrate that combining
expression and connectomes leads to specific testable
hypotheses about circuit mechanisms that are inaccessi-
ble to either approach alone.

Results

Genetic tools for labeling the visual system

To enable transcriptome analyses of defined cell popula-
tions, we first assembled a collection of genetic drivers to
access them. For this study, we combined drivers from
existing collections for cell types in the lamina (Tuthill et
al., 2013), the mushroom body (Aso et al., 2014), and the
lobula (Wu et al., 2016) with new driver lines for many ad-
ditional optic lobe cell types and also some neurons of the
central complex (Wolff and Rubin, 2018; T. Wolff, per-
sonal communication). Nearly all of these drivers were
generated using an intersectional method, split-GAL4,
to refine expression patterns of GAL4 driver lines. To
characterize new driver lines, we imaged expression pat-
terns across the entire fly brain to determine overall driver
specificity (Figures 1D, 1-S1) and examined anatomical
features such as layer patterns in higher resolution im-
ages to identify specific cell types (Table S1, Figure 1-
S2). For most lines, we further confirmed the identity of
labeled cells by examining the morphology of individual
cells using stochastic labeling (Figure 1-S2). Although
we noted that a few patterns also include some additional
contaminating cells (Table S1), these driver lines are the
most specific tools currently available to access individ-
ual cell types in the optic lobe.

Purifying nuclei with TAPIN

Next, we employed an improved INTACT method to mea-
sure nuclear transcriptomes in genetically defined cell
populations (Henry et al., 2012), and we also developed a
new variant of the method that permits higher throughput
with increased purity and sensitivity. In both approaches,
nuclei are purified using a nuclear tag whose expres-
sion is driven in a cell population of interest by either a
standard or split GAL4 driver (Figure 2A). The new vari-
ant protocol, tandem affinity purification of INTACT nuclei
(TAPIN), uses a bacterial protease (IdeZ) to specifically
cleave antibodies in the hinge region separating their
Fc and antigen binding F(ab’), fragments (Figures 2B,
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Figure 1: Genetic tools to access
cell types in the visual system. A.
Major brain regions profiled in this
study (brain image from Jenett et
al., 2012). The optic lobes have a
repetitive structure of ~ 750 retino-
topically arranged visual columns of
similar cellular composition. B,C Ex-
amples of single cells in the optic
lobe. B. Left, subregions of the fly
visual system. Right, examples of
layers and neuropil patterns of var-
ious classes of visual system neu-
rons. C. We profiled cell types ar-
borizing in the lamina (blue), medulla
(purple) and lobula complex (green)
of the visual system. Many cells
contribute to multiple neuropiles so
other groupings are possible. Note,
some cell types are present at one
cell per column, while others are less
numerous with cells that each con-
tribute to several columns. For ex-
ample, the main synaptic region of
the first optic lobe layer, the lamina,
contains processes of some 13,000
cells but these belong to only 17
main cell types: 14 neuronal and 3
glial (top row). A small number of
additional neurons (lamina tangen-
tial cells, Lat) project to a region just
distal to the main lamina neuropile.
D. Representative expression pat-
terns of driver lines that target spe-
cific cell types. Each image is a max-
imum intensity projection of a whole
brain confocal stack (only one optic
lobe is shown). In each image the
brain is counter-stained (magenta)
with a neuropil marker and both the
targeted cell type and the driver are
indicated in the lower left and right
corner, respectively. Additional im-
ages (focusing on drivers first de-
scribed in this study) are shown in
Figures 1-S1 and 1-S2. Imaging pa-
rameters and brightness and con-
trast were adjusted individually for
each image. For genotypes and im-
age details see Table S5.
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2-S1B). Treating protein A magnetic bead-bound nuclei
with this protease generates both nucleus-F(ab’), and
bead-Fc complexes. Soluble nucleus-F(ab’); is then re-
captured on protein G magnetic beads, removing non-
specifically bound material from the first capture. INTACT
successfully profiled many of the abundant cell types in
the optic lobe (> 1000 cells per brain), but failed for
sparser cell types and those whose nuclei were difficult to
purify by differential centrifugation (photoreceptors, glia,
T4, T5). We solved these problems with TAPIN, which
does not purify nuclei prior to bead capture.

The greatest advantage of TAPIN is its ability to pu-
rify nuclei from sparse cell types (< 50 cells/brain) (Ta-
ble S1). INTACT is not suitable for these lines because
of loss during differential centrifugation. This difficulty
cannot be overcome by processing more brains per ex-
periment because differential centrifugation is difficult to
scale. TAPIN solves this problem by running a first cap-
ture on crude extracts generated from hundreds to thou-
sands of fly heads. The substantial background in this
first capture is reduced 5- to 6- fold in a second capture
with only a modest decline in both the yield of nuclei and
amplified cDNA (Figure 2C).

Measuring transcriptomes with INTACT- and
TAPIN-seq

We applied INTACT and TAPIN to the cell populations
defined by the genetic drivers we described above (Ta-
ble S2). Most drivers express in a single anatomically
defined cell type or a small group of related cell types.
Others target more heterogeneous cell populations shar-
ing a common property (e.g., driver lines aimed at reca-
pitulating the expression of a neurotransmitter marker).
Altogether, we built 250 RNA-seq libraries from 242 sam-
ples of purified nuclei (46 using INTACT and 196 using
TAPIN) and 8 manually dissected samples (Table S2).
We estimated relative transcript abundance in each li-
brary using kallisto (Bray et al., 2016). Libraries built
from more nuclei yielded more cDNA (Figure 2D), al-
lowed more genes to be detected (Figure 2E), had more
estimated transcripts (Figure 2-S1C), more reproducible
transcript abundance (Figure 2F), and less bias in cover-
age across gene bodies (Figure 2-S1D,E). We focused
on 203 libraries that had at least 8,500 genes detected,
319 cDNA yield, and 0.85 Pearson’s correlation of tran-
script abundances in two biological replicates. These
203 libraries consist of at least two biological replicates
built from 100 drivers that covered 67 cell types (53 vi-
sual system, 7 mushroom body, 5 central complex, 2
muscle), 6 broader cell populations (ChAT, Gad1, VG-
lut, Kdm2, Crz, and NPF), and 2 manually dissected tis-
sues (the lamina and remainder of the optic lobe) (METH-
ODS). We provide the read and abundance data for the
remaining sub-optimal libraries (47 libraries covering 24
cell types) in the event they may be informative, but we
do not consider these to be of sufficient quality and do

not consider them further here. We did not sort the sex
of flies when preparing TAPIN-seq libraries, as we did not
observe large differences in male and female expression
profiles (Figure 2-S1F).

We were encouraged by the clear enrichment of pre-
viously identified markers in cell types where they were
expected. For example, we recovered transcription fac-
tors (TFs) previously found in the developing monopolar
interneurons and inner photoreceptors (Tan et al., 2015;
Figure 2G). We further confirmed our measurements by
comparing TAPIN-seq results for twelve cell types that
were also recently profiled by FACS-seq (Konstantinides
et al., 2018; Figure 2-S2A,B) and found concordant ex-
pression of cell type-enriched genes. This concordance
also argues against major differences between nuclear
and cytoplasmic transcriptomes. In combination with the
technical quality of our libraries, this confirmation by in-
dependent gene expression measurements validated our
approach, and also motivated us to explore how to best
interpret a large dataset of relative abundances.

Interpreting transcript abundance with mix-
ture modeling

Deriving biological insights from a matrix of transcript
abundances is not straightforward. While a cell's ex-
pression of a gene can be used to infer a specific func-
tional property of that cell, the level of expression that is
needed to establish confidence in such an inference is
much less clear. For example, expressing the vesicular
acetylcholine transporter (VAChT) implies that a neuron
is cholinergic. However, VAChT transcript abundance
exhibits a wide distribution and it is not clear, a priori,
what level is necessary to conclude that a cell is cholin-
ergic (Figure 3A).

We used mixture modeling to address this challenge by
describing the expression levels of each gene as arising
from a mixture of two log-normal distributions represent-
ing binary ‘on’ and 'off’ states (Figure 3A; METHODS).
Genes can of course express in more than two states,
but we show through extensive validation that this simpli-
fying assumption is a useful one. Modelling VAChT ex-
pression in the high-quality TAPIN/INTACT-seq libraries
unambiguously inferred VAChT states for all drivers (Fig-
ure 3B). We also found that the model was useful for
addressing transcript-carryover, evident in our data (as
well as published bulk and single cell studies in the fly
(Davie et al., 2018) and mouse (Siegert et al., 2012;
Macosko et al., 2015)) as photoreceptor transcripts de-
tected in non-photoreceptor cells (Figure 3-S1A). For ex-
ample, the model correctly inferred that only R1-6 pho-
toreceptors expressed the primary rhodopsin ninaE, al-
though ninaE abundance in other cells reached as high
as 2,702 TPM (the mushroom body cell type PAM_1)
(Figure 3-S1B,C). We used this method to transform our
catalog of transcript abundances to probabilities of ex-
pression (Figure 3C), observing a wide spectrum of on
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Figure 2: Tandem-affinity purification of INTACT nuclei (TAPIN) enables neuronal genomics. A. Cell type-specific drivers enable expression of the
UNCB84-2XGFP nuclear tag (green) in specific populations of cells. Both the targeted cell type and driver are indicated in the lower left and right
corner, respectively. B. Following nuclei harvest, two rounds of magnetic bead capture serially purify target nuclei. After the first round of protein
A bead capture, bacterial protease IdeZ cleaves the anti-GFP antibody in the flexible hinge region, allowing a second round of bead capture with
protein G, which recognizes the F(ab’), region. Protein G, unlike Protein A, can bind both the Fc and F(ab’). regions of an immunoglobulin. C.
Two capture rounds reduce the level of non-specific background (grey bars, mock IgG control) while maintaining the cDNA yield from the captured
target nuclei (green bars). Bars represent the mean of two replicates (shown as points). D. RNA-seq libraries created with more nuclei yield more
cDNA (circles). TAPIN libraries had lower non-specific background than INTACT (blue vs orange triangles). E. Libraries with more cDNA detect
more genes. F. Libraries with more cDNA have more reproducible transcript abundances. G. Previously identified markers of lamina monopolar
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Figure 3: Mixture modeling accurately interprets TAPIN-seq measurements. A. The distribution of Vesicular acetylcholine transporter (VAChT)
abundance fit with a mixture of two log-normal components. B. Interpreting these components as ‘off’ and ‘on’ states unambiguously infers expres-
sion state in essentially all drivers. C. Mixture modeling transforms our catalog of relative transcript abundances (top) to discretized expression
states (bottom). D. Histogram of expression breadth per gene. E. Cumulative distributions of expression breadth for all genes (gray), transcription
factors (black), homeobox TFs (orange; InterPro domain IPR001356), neuropeptides (red), and genes involved in synaptic vesicle endocytosis
(blue). F,G. The fkh modeling results were compared to its protein expression pattern as evaluated with a BAC transgenic (See Figure 3-S2A).
F. Histogram bars represent raw abundance of all cells in our catalog. Blue and orange curves represent the inferred off and on components,
respectively. Points represent the cells tested for transgene expression showing either detectable GFP (Green) or no signal (Black). The points’
vertical position reflect the estimated probability of gene expression. G. Forkhead-GFP expression in selected cell types. Fkh-GFP (mainly nuclear,
in green) and cell type-specific expression of a membrane marker (in magenta) are shown. Because of the wide range of fkh expression levels,
imaging parameters and brightness and contrast adjustments are not identical for different panels. Cells with detectable nuclear GFP signal above
the background in the same image were scored as expressing fkh. H. As in J, to evaluate Ets65A modeling results (See Figure 3-S2).
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levels and dynamic ranges between on and off states
(Figure 3-S1D,E). To further simplify these probabilities,
we discretized them into on (p > 0.8) and off (p < 0.2)
states, and otherwise considered them to be ambiguous
(0.2 < p < 0.8). The expression states inferred for repli-
cates had a median 95% concordance (Figure 3-S1F).
We combined information from replicates to infer expres-
sion at the driver and cell type levels (METHODS).

We found many genes that express in all cell types,
and many that express in only one, with a range in be-
tween (Figure 3D,E). As expected, given their roles in
specifying identity, homeobox transcription factors (TF)
expressed more specifically than transcription factors
in general (Figure 3E). Neuropeptides also expressed
specifically, while genes with the more general function
of synaptic vesicle endocytosis were broadly expressed.
We explore these functional properties in more detail
later (Figure 44).

Evaluating accuracy of TAPIN-seq measure-
ments

To validate our TAPIN-seq measurements, we first com-
pared our inferred expression states to FlyBase cu-
rated reports of protein expression (n=197 data points
of gene/cell pairs; 4 negative points, 193 positive points;
n=22 cells; n=69 genes, Table S3) and found 93% con-
cordance (183 matches; 14 mismatches from six genes;
0 mismatches for negative benchmark points; Figure 3-
S1G). The benchmark mismatches fell into three cate-
gories: expression levels near the transition between
inferred on and off components (veli, verm, para; Fig-
ure 3-S1H-J), genes with a wide dynamic range of ex-
pression (Syx, Rab11; Figure 3-S1K,L), and genes with
undetected transcript but previously detected protein
(Myo61F; Figure 3-S1M). The first two categories likely
arise from imprecision in the model’s fitted components
and its representation of transcript abundance as bi-
modal, rather than continuous. The third category (con-
flicting transcript and protein levels) could reflect either
technical issues (low sensitivity in our measurements, or
false positives in the prior work due to antibody cross-
reaction) or biological complexities (e.g., long-lived tran-
scripts, subcellular localization).

To further evaluate our results for genes expressed
across a wide range of levels, we compared the model
output to protein expression patterns for two transcrip-
tion factors: Forkhead (fkh) and Ets65A. We visualized
each protein using a C-terminal GFP tag; the tagged pro-
teins were expressed from BAC transgenes with large
flanking sequences to ensure a near native genomic con-
text (Kudron et al., 2018). From the transcript data, we
inferred fkh gene expression in 14 cell types across a
35-fold range of abundance (60 to 2,103 TPM). Of 28
cell types that we visualized at the protein level, fkh was
detected in all but one that we expected from TAPIN-
seq (Figures 3F,G and 3-S2A). The sole exception, Tm4,

has a fkh abundance (60 TPM) near the border between
the inferred off and on states (Figure 3F). However, we
did detect protein in Dm9, which had a near identical
raw transcript abundance (61 TPM). Similarly evaluat-
ing Ets65A expression identified two mismatches out of
11 tested cells (Figures 3H, 3-S2B). Ets65a protein was
not detected in Tm20 (70 TPM) and epithelial glia (161
TPM), while it was weakly detected in Dm3 (77 TPM).
These results further support the accuracy of TAPIN-seq
and our statistical model even for genes with a wide
dynamic range. The agreement between our transcript
on/off calls and protein expression encouraged us to use
the discretized on/off calls for all further analyses; the un-
processed relative abundances in TPM are reserved for
deeper analysis when needed.

Examining the relation between cell types
using transcriptomes

To study the relation between cell types, we built a den-
drogram based on the expression states we inferred for
the whole transcriptome and estimated the support for
each branch point with bootstrap resampling (Figure 4A).
The broad groupings were well supported and mostly
intuitive: muscle were outgroups, followed by a mush-
room body cell type (PAM_4), the glia, the photorecep-
tors, and the remaining neurons. Several fine groupings
of anatomically closely related neurons were also well
supported (e.g., Kenyon cells; C2, C3; Lawf1, Lawf2;
T4, T5; LPLC1, LPLC2). However, mid-level branchings
were not well supported, indicating the lack of a simple hi-
erarchical relationship. Neurons were generally grouped
by region: central complex, mushroom body, and optic
lobe. One surprise was the grouping of Tm20 and Dm1,
away from all other optic lobe cell types. Upon closer
examination, the identity of genes expressed exclusively
in these two lines (/z, Pdh, bw) suggest that this group-
ing is driven by shared pigment cell contamination in the
GAL4-tagged patterns of these driver lines. Similarly, the
unusual position of PAM_4 is likely due to some unidenti-
fied non-neuronal cells in the driver. These are examples
of imperfections in the GAL4 driver lines. While they can
lead to some false positives for the main target cell types,
they can also provide additional information. For exam-
ple, analyzing the overlap between Dm1 and Tm20 al-
lowed us to infer marker genes expressed in the pigment
cell population.

Identifying genes that mark cell types and
groups

We next identified genes that marked cell groups in the
tree, using three criteria: genes that expressed in all the
cells within a group, at most two cells outside this group,
and with transcript abundance higher than all cells out-
side the group (For simplicity, we will hereon refer to
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Figure 4: TAPIN-seq profiles identify genes enriched in cell types and groups A. Cells grouped by a minimum evolution tree of their inferred
expression states. B. Heatmap of marker genes enriched in photoreceptors, glia, muscle, and pigment cells. C. Distribution of expression breadth
for genes in “terminal” FlyBase gene groups with more than 10 members in our expression probability matrix. The least- and most- broadly
expressed gene groups are labeled, along with the DPR-interacting, beat and DPR family of extracellular proteins. D. TfAP-2 transcription factor
distinguishes closely related cell types T4 and T5. E,F. TfAP-2 protein is specifically expressed in T4 and not in T5, confirming this detection of
differential expression levels. GFP-tagged Tfap-2 (mainly nuclear, in green; see Table S5 and Methods) is shown together with a membrane marker
(magenta) expressed in T4 (E) or T5 (F) cells. G. Comparison of genes with differential expression in two driver lines for T5 neurons expressing in
different subtypes, identify genes that differentially label layers of the lobula plate (corresponding to different subtypes of T5 cells). H. Confirming the
TAPIN-seq identification, klg protein (detected using a GFP tag (green); see Table S5 and Methods) is expressed in T4/T5 cells with the expected
layer specificity (layers 3 and 4) in the lobula plate (LP). A neuropil marker is shown in magenta.
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cell type as just cell). We used these criteria to iden-
tify markers for photoreceptors (n=108), glia (n=60), and
muscle (n = 76) (Figure 4B, Table S4). These genes in-
cluded many known as well as new markers. For ex-
ample, genes enriched in photoreceptors include signal-
ing components (Arr2, Galphaq) and transporters (trpl,
Eaat2) with known physiological roles as well as unchar-
acterized orphan transporters (e.g., CG8468). We also
identified 18 markers for pigment cells using the Tm20
and Dm1 profiles. In addition to the three types of lamina
glia we profiled, several other glia types are present in
both the lamina and the medulla. Genes expressed ex-
clusively in the dissected samples (lamina, remainder of
optic lobe) and not in the TAPIN libraries identified marker
genes for optic lobe cells that we did not directly pro-
file, such as medulla glia. Indeed, the genes identified in
this way included several known markers for astrocytes
(alrm, wun2, Obp44a) (Huang et al., 2015).

We examined the breadth of expression of different
functional groups of genes, as defined by FlyBase gene
group curation. HOX-like homeobox TFs were among
the most specifically expressed group, while groups
of core cellular machinery (e.g., beta importins, mito-
chondrial complexes) were among the most broadly ex-
pressed groups (Figure 4C). Some groups included both
broadly and very specifically expressed genes. For ex-
ample, among cell adhesion molecules, we noted an
interesting distribution for three gene groups proposed
to be involved in protein-protein interactions that un-
derlie synaptic connectivity (Ozkan et al., 2013; Tan et
al., 2015; Carrillo et al.,, 2015). While the 11 DPR-
interacting proteins (DIP) were among the most specifi-
cally expressed genes (expressed in a median of 6 cells),
beat (median, 25.5 cells) and DPR (median, 51 cells)
genes were more broadly expressed (Figure 4-S1A-D).
As physical interactions among these and other extra-
cellular proteins have been systematically characterized
(Ozkan et al., 2013), we combined their expression and
interaction patterns to estimate the number of potential
interaction between cells in the lamina (Figure 4-S1E),
many of which are in actual contact (Figure 4-S1F). Ex-
cept for a clear paucity of interacting protein pairs ex-
pressed by glia, these global expression-based patterns
did not correlate well with connectivity in the lamina.
However, we found that every pair of lamina cells ex-
pressed tens of interacting protein pairs, highlighting the
broad potential for cell-cell interactions not only in the de-
veloping (Tan et al., 2015) but also adult optic lobe.

Transcriptomes can distinguish closely re-
lated cell types and subtypes

To ask whether we could identify genes distinguishing
closely related cell types, we examined T4 and T5.
These cells had similar transcriptomes and were neigh-
bors in the phylogenetic tree, but we found one transcrip-
tion factor, TfAP-2, that was expressed nearly two orders

of magnitude higher in T4 (390 TPM) than T5 (6 TPM)
(Figure 4D). We confirmed this pattern at the protein level
(Figure 4E,F).

T4 and T5 cells can each be further divided into four
subtypes that preferentially respond to motion in one of
four cardinal directions and differ in anatomical details
such as the lobula plate layer to which they project ax-
ons. While our split-GAL4 lines do not isolate single
T4/T5 subtypes, the T5_d1 and T5_d2 drivers show dif-
ferences in subtype expression (Figure 1-S1B,B’,C,C).
Comparing the transcriptomes of these two drivers con-
firmed previously described markers (Con, bi, dac; Apitz
and Salecker, 2018) that distinguish T4/T5 cells of lob-
ula plate layers 1/2 and 3/4, and indicated additional
genes, including a transcription factor (dysf) and cell ad-
hesion molecules (klg, Dscam3) with selective expres-
sion in these subtypes (Figure 4G). As a further confir-
mation of this finding, we verified that a tagged klg pro-
tein showed layer-specific expression in the lobula-plate
consistent with these T4/T5 subtypes (Figure 4H).

Reference bulk transcriptomes help interpret single
cell transcriptomes

Single cell RNA-seq (scRNA-seq) was recently used to
map the optic lobe (Konstantinides et al., 2018) and brain
(Davie et al., 2018). Despite its routine use, interpret-
ing scRNA-seq measurements — clustering single cell
transcriptomes and labeling these clusters as known cell
types — remains challenging. For example, the 52 sin-
gle cell clusters found in the optic lobe (23 labeled as
known cell types, including 7 types of glia; Konstantinides
et al., 2018) and the 87 clusters found in the whole brain
(41 labeled, also including 7 glia; Davie et al., 2018)
far under-estimate the expected diversity of cell types
— over one hundred anatomically distinct neuronal cell
types have been described in the optic lobe alone (Fis-
chbach and Dittrich, 1989; Morante and Desplan, 2008;
Otsuna and lto, 2006; Nern et al., 2015; Wu et al., 2016).
Furthermore, comparing the number of single cells in
each optic lobe cluster to the true abundance of each cell
type (as established by neuroanatomical studies) reveals
that the single cell map does not proportionally repre-
sent abundance (ranging from ~5 times fewer Dm8/Tm5c
cells to ~7 times more Dm12 cells than expected in the
optic lobe map; Figure 5A). The whole brain map, mea-
sured using the more sensitive 10X scRNA-seq platform
rather than Drop-seq used for the optic lobe map (Svens-
son et al., 2017), showed similar cell type abundances
(Figure 5B). Without detailed neuroanatomy to serve as
ground-truth, this similarity could be interpreted as re-
producibility across platforms. Instead, our results sug-
gest caution when interpreting cell type frequencies from
scRNA-seq maps, as they can be skewed by experimen-
tal artifacts such as cell type-specific differences in RNA
isolation yields, computational over-clustering, or inaccu-
rate cell type labeling. Given the known number of cell
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types and their frequencies, it is clear that interpreting
single cell measurements is challenging.

Comparison with our data reveals additional chal-
lenges in mapping scRNA-seq clusters to known cell
types. To compare our data to the brain map, we used
non-negative least squares regression to model each
TAPIN-seq transcriptome as a linear weighted sum of sin-
gle cell cluster transcriptomes, assuming that large re-
gression coefficients reflect matching cell types (Davie
et al., 2018; Cao et al., 2019). We interpreted the re-
sults of this comparison against an ideal scenario where
single cell clusters were perfectly resolved and accu-
rately labeled, and assuming that the driver lines used
for TAPIN-seq profiling had minimal expression outside
of the main target cell type. In this scenario, we would
expect a unique cluster matching each of our TAPIN-
seq profiles of cell type-specific driver lines, as well as
many unmatched clusters, reflecting cell types that we
did not profile. However, we observed few one-to-one
matching clusters for our TAPIN-seq profiles (e.g., T1,
Tm1, Dm8, Dm9, Pm3), several one-to-many matches
(e.g., photoreceptor cluster #53 matching our R1-6, R7,
R8-Rh5, and R8-Rh6 profiles; also, L1-5 cluster #20,
Lawf1/2 cluster #58, and T4/T5 cluster #24), clusters with
no TAPIN-seq matches (e.g., clusters #7, 15, 23), as well
as TAPIN-seq cell types without a matching cluster (e.g.,
Dm4, Dm11, Mi4, Tm2, Tm20, LPLC1) (Figure 5C). The
matches confirmed several clusters labeled as single cell
types (e.g., Tm1, Mi1) or multiple cell types (e.g., pho-
toreceptors, L1-5, Lawf1/2, T4/5, Kenyon cells) and also
suggested possible labels for previously unlabeled clus-
ters (e.g., Dm8 cluster #52, Dm9 cluster #74, pigment cell
cluster #76) and alternative labels for previously labeled
clusters (e.g., TmY5a TAPIN matches the TmY14 clus-
ter #11; Lai TAPIN matches Dm8/Tm5c cluster #39). We
observed similar results when analyzing the optic lobe
map, with few apparent single cell — TAPIN-seq matches
(Figure 5-S1). Although this result could arise from major
errors in our TAPIN-seq profiles, this possibility is unlikely
given our earlier validation results and the concordance
between our TAPIN-seq profiles and cell type-enriched
genes identified from independent FACS-seq measure-
ments (Figure 2-S2).

As a separate comparison of the bulk and single cell
profiles, we examined the bulk expression of genes mark-
ing each single cell cluster (Figure 5-S2). Confirming the
regression results, this analysis also found few one-to-
one matches in which single cell cluster markers were en-
riched in only a single TAPIN-seq profile. Instead, most
cluster markers were either enriched in multiple bulk cell
types (over-clustering), or were not enriched in our data
(cell types we did not profile by TAPIN-seq). As before,
many TAPIN-seq profiles were not enriched for cluster
markers, reflecting cell types that were either missing or
clustered with other cell types in the single cell map.

We further explored specific examples where the
TAPIN-seq data offered new insight into the single cell

maps by suggesting alternative labels or labeling unan-
notated clusters. The single cell clusters labeled as
TmY14 matched the TmY5a TAPIN profile (Figure 5C).
The cluster was originally labeled based on the expres-
sion of a single transcription factor, knot (kn), as deter-
mined using a kn-GAL4 reporter. We also observed kn
expression in our TmY5a measurements and further con-
firmed its expression in both TmY14 and TmY5a cells us-
ing the kn-GAL4 reporter line, suggesting that the clus-
ter likely includes not only TmY14 cells, but also TmY5a
and other kn-expressing cells (Figure 5-S3). Similarly,
we found that the Dm2 cluster (optic lobe cluster #55),
which was labeled based on a Dm2 FACS-seq profile,
matched our Mi15 profile (Figure 5-S2A). This observa-
tion is concordant with previous reports that the line used
to FACS sort Dm2 also expresses in Mi15 (Supplemen-
tary Figure 2 in Takemura et al., 2013, Table S4 in Nern
et al., 2015). Finally, we found that the Dm8/Tm5c clus-
ter (brain cluster #39) matches our Lai TAPIN-seq pro-
file, while unlabeled clusters match our Dm8 and Dm9
TAPIN-seq profiles (Figure 5D). Our measurements also
suggest labels for other previously unannotated clusters,
such as brain cluster #76 which likely reflects pigment
cell, as demonstrated by enrichment of its marker genes
in both Dm1 and Tm20 profiles — both measured with
lines that also express in pigment cells (Figure 5-S2B). As
expected, the genes marking this cluster include known
pigment cell markers (e.g., Pdh, rdhB). Altogether, our re-
sults demonstrate that cell type-identified data, such as
bulk transcriptomes, can help interpret single cell RNA-
seq measurements.

Profiles reveal neurotransmitter output for
most neuron types

The proteins that synthesize and transport neurotrans-
mitters are well known, enabling us to use their ex-
pression to predict neurotransmitter phenotype. We
used histamine decarboxylase (Hdc), glutamate decar-
boxylase (Gad1), the vesicular acetylcholine transporter
(VAChT), and the vesicular glutamate transporter (VG-
lut) to identify potential histaminergic, GABAergic, cholin-
ergic, and glutamatergic cell types, respectively (Fig-
ure 6A). Our model unambiguously inferred expression
states for these genes and indicated a single transmit-
ter (from this group) for nearly all neurons we profiled.
A second cholinergic marker, choline acetyltransferase
(ChaT), matched VAChT expression almost perfectly (the
two genes also share an exon). The sole exception, ap-
parent expression of ChAT but not VAChT in R7 photore-
ceptors, likely results from a subset of dorsal rim R8 cells
labeled by the R7 driver line (further discussed below,
also see Table S1).

Besides these four neurotransmitters that we identified
by one or two marker genes, we also identified candi-
date dopaminergic neurons based on the combined ex-
pression of tyrosine hydroxylase (ple), dopa decarboxy-
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Figure 5: TAPIN-seq complements single cell RNA-seq profiling. A,B. We evaluated whether single cell RNA-seq of the optic lobe (A, Konstantinides
et al., 2018) and brain (B, Davie et al., 2018) proportionally represent cell types found in the optic lobe. By comparing the single cell cluster sizes to
the true abundance of each cell type (estimated as described in the methods) we found that the scRNA-seq map can both under- and over-estimate
the abundance of each cell type (assuming accurate cell type labels), or that the cell type is incorrectly assigned (i.e. contains different or additional
cell types). To estimate the true cell count, we made use of known anatomy (for example, several cell types are known to be present exactly once
in each of the 2 x ~ 750 medulla columns per brain) or relied on published counts. In addition, we performed some new counts. (See methods for
details.) Observed/expected ratio = ( (size of cluster labeled as cell type X / size of cluster labeled as T1) / (true abundance of cell type X / true
abundance of T1)). C. We used non-negative least squares regression to model each TAPIN-seq profile as a linear weighted sum of single cell
clusters in the whole brain scRNA-seq map. The heatmap represents the regression coefficients of each single cell cluster (rows) contributing to
the TAPIN-seq profile of each cell type, normalized within rows. D. We evaluated expression of genes that mark selected single cell clusters (Davie
et al., 2018) in our TAPIN-seq profiles of visual system neurons. (see Figure 5-S2 for the complete heatmap).

lase (ddc), vesicular monoamine transporter (Vmat) and
dopamine transporter (DAT). While DAT, ple, and ddc
were also expressed individually in several cell types
that did not express Vmat, only known dopaminergic cell
types and one medulla neuron (Mi15) expressed this
combination (Figure 6A).

One neuronal cell type, T1, expressed none of the
neurotransmitter markers VGlut, VAChT, Vmat, and
Gad1 (Figure 6A). Although T1 does express most pan-
neuronal genes, it does not express bruchpilot (brp), a
key component of presynaptic active zones. Consistent
with this result, EM reconstruction has identified very few
T1 presynaptic specializations (Takemura et al., 2008).

Transmitters for nearly half of our cell types have been
previously proposed and generally agree with our re-
sults. For example, VAChT/ChAT expression in Kenyon
cells supports recent reports showing they are choliner-
gic (Barnstedt et al., 2016; Crocker et al., 2016). Fluo-
rescence in situ hybridization and immunolabeling guided
by our measurements confirmed the expression of ChAT,
Gad1, and VGlutin Mi1, Mi4, and Mi9, respectively (Long
et al., 2017; Takemura et al., 2017). However, we see
considerable differences between our assignments and
some previous work that used reporter transgenes (Var-
ija Raghu et al., 2011; Raghu and Borst, 2011; Raghu
et al., 2013), which we generally attribute to unfaithful
transgene expression patterns. We believe our assign-
ments to be more reliable, however they are not with-
out problems. For example, one assignment inferred by
our model that seems unlikely and is not supported by
other available data is the presence of Gad7in Mi9, which
was not detected in the FISH or antibody experiments
mentioned above. Given the presence of some contam-
inating Mi4 cells in at least one Mi9 driver and the lower
Gad1 abundance (mean 276 TPM in Mi9; 2165 TPM in
Mi4; 1870 mean TPM in predicted GABAergic cells), we
attribute the Mi9 Gad1 signal to contaminating contribu-
tions from other GABAergic cells such as Mi4.

Transcriptional regulation of neurotransmitter out-
put

We next tried to identify transcriptional regulators of
neurotransmitter output, by searching for TF genes ex-
pressed in strong correlation with transmitter phenotype.
However, we only found such TFs for histaminergic out-

put (Figure 6-S1A), which in our dataset is only rep-
resented by photoreceptor neurons. This observation
agrees with work on neuronal identity showing that sin-
gle TFs rarely encode transmitter identity, but rather dif-
ferent TF and TF combinations are used to specify the
same neurotransmitter output (Hobert, 2016). We thus
expanded our search to TFs whose expression was infor-
mative about transmitter phenotype (i.e., cells express-
ing TF A are likely to produce neurotransmitter B; even
if not all cells producing neurotransmitter B express TF
A; Figure 6-S1A). This search identified candidate TFs
for nearly all neurotransmitter types. For example, the
19 neuronal types (including the broad chat-GAL4 line)
expressing apterous (ap) are cholinergic. Its worm or-
tholog, ttx-3, regulates the cholinergic phenotype of the
AlY neuron (Wenick and Hobert, 2004). Several other
TFs we identified also have worm or mouse orthologs
implicated in neuronal identity (Figure 6-S1B). Several
TFs appeared to identify a transmitter phenotype within
a group of cell types but not across the entire dataset.
For example, Lim3 distinguishes the GABAergic Dm10
from the other Dm cell types in our dataset and is also
expressed in several other GABAergic cells (Mi4, Pm3,
Pm4) but was also detected in the cholinergic LC4 and
the glutamatergic TmY5a and Tm29. We confirmed the
differential Lim3 protein expression in Dm10 and Dm12
cells (Figure 6-S1C). Several of the transcription factors
that we found to be informative of neurotransmitter out-
put were also implicated by single cell RNA-seq data,
including ap (cholinergic), { (glutamatergic), and Lim3
(GABAergic) (Konstantinides et al., 2018). Our data also
indicate exceptions to these patterns (i.e., neurons ex-
pressing fj and Lim3 but with a different neurotransmitter
phenotype; Figure 6-S1A). These observations indicate
that neuronal features are likely regulated in a context-
dependent and combinatorial manner, and that transcrip-
tomes can identify putative regulators.

Co-expression of canonical small molecule transmit-
ters with non-canonical transmitters is widespread

Co-release of multiple neurotransmitters can enhance
the signaling capacity of neurons and neural circuits. For
example, the same cell type might release different trans-
mitters under distinct conditions or use them to elicit dis-
tinct responses in different target cells. In addition to Mi9
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Figure 6: Expression of synthesis and transport genes establish neurotransmitter phenotypes. A. Expression of neurotransmitter marker genes
indicate the neurotransmitters produced in nearly all profiled cells. With few exceptions, nearly all cell types express only one fast neurotransmitter.
B,C. We confirm TAPIN-seq results at the protein level (green) for (B) Vesicular monoamine transporter (Vmat) expressed in Mi15 (magenta) and
(C) Nitric oxide synthase (Nos) in C3 (magenta). Top panel in (C) shows a section through the optic lobe, lower panels C3 cell bodies. D. Several
neuropeptides and receptors also express specifically (examples). E. Allatostatin A (AstA) protein expression in the medulla as an example of a
neuropeptide with a very specific optic lobe expression pattern. The AstA distribution in the optic lobe matches the distribution and layer pattern of
Pm3 cells, consistent with the TAPIN-Seq data.
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(discussed above as being likely due to contamination),
we observed two cases of potential co-transmission in-
volving the canonical small molecule neurotransmitters.
Both Mi15 drivers express dopaminergic and choliner-
gic markers, and both R8 drivers expressed cholinergic
and histaminergic markers. We confirmed expression
of Vmat protein in Mi15 (Figure 6B), the first identified
columnar dopaminergic cell type within the optic lobe,
and further below we confirm the unexpected VAChT ex-
pression in R8 (Figure 8A).

Evidence for co-transmission involving additional
molecules, such as neuropeptides or nitric oxide, ap-
pears frequently in our data set. Nitric oxide is a widely
conserved signaling molecule that can act on many kinds
of cells, including neurons (Lowenstein and Snyder,
1992). We observed very specific expression of its syn-
thesizing enzyme, nitric oxide synthase (Nos), in the lam-
ina (C2, C3, and Lawf2) and medulla (Mi4, Pm4, Tm4 and
Mi15). To further validate these results, we confirmed
Nos expression at the protein level in C3 neurons (Fig-
ure 6C). Nitric oxide can be released extra-synaptically,
potentially enabling signaling between neurons that are
not synaptic partners.

Several neuropeptides and their receptors were also
expressed in distinct patterns suggesting widespread yet
specific peptidergic signaling in the visual system (Fig-
ure 6D). For example, AstA was observed in just one cell
type (Pm3; confirmed at the protein level; Figure 6E),
while AstC was expressed in several cell types, and
pigment-dispersing factor (Pdf) was expressed in none
of the optic lobe cells we profiled. The receptors for
all three of these neuropeptides were more broadly ex-
pressed (Figure 6D). The broad expression of Pdf recep-
tor (Pdfr) is consistent with the extensive arborization pre-
viously observed for Pdf-expressing neurons at the sur-
face of the medulla.

While we focused on genes with well-known functions,
our expression patterns also suggest new functions for
poorly characterized genes (Figure 6A). For example,
photoreceptors specifically expressed CG8468, an or-
phan transporter in the solute carrier 16 (SLC16) family
of monocarboxylate transporters. This gene might rep-
resent a candidate vesicular or plasma membrane trans-
porter of histamine, which remains unidentified in any
species. We also observed photoreceptor-specific ex-
pression of CG45782 (lovit), a member of the SLC45 su-
crose transporter family recently reported as a putative
histamine transporter (Xu and Wang, 2019).

Broad and patterned expression of neurotransmitter
receptors

Since the functional consequences of the release of
a neurotransmitter depend on which receptors for this
transmitter are expressed in the receiving cell, measuring
the expression of both neurotransmitter input and output
genes is necessary to assign potential synaptic signs to

connectomes. For example, glutamatergic transmission
in Drosophila may be either inhibitory or excitatory, de-
pending on the receptors.

In general, neurotransmitter receptors are broadly ex-
pressed, qualifying each cell type to detect multiple neu-
rotransmitters (Figure 7A). Patterns for individual recep-
tors (or receptor subunits) varied widely. Some recep-
tors, such as the GluClalpha glutamate-gated chloride
channel, thought to be the main mediator of inhibitory glu-
tamatergic transmission in flies, were expressed in most
but not all cell types (Figure 7A,B). Expression of oth-
ers was much more restricted, such as the EKAR glu-
tamate receptor subunit detected only in photoreceptor
neurons, consistent with previous work (Hu et al., 2015).
Nearly all cells expressed receptors for acetylcholine,
GABA, and glutamate, as expected from the combina-
tion of predicted transmitter phenotypes and connec-
tomics data. Receptors for neuromodulators such as
serotonin, dopamine, octopamine, and neuropeptides
in general were also widespread (Figure 6D). For ex-
ample, octopamine receptors were expressed in broad,
yet gene- and cell-type specific patterns, consistent with
widespread octopaminergic modulation of visual pro-
cessing (for example, Arenz et al., 2017; Strother et al.,
2018; Tuthill et al., 2014). We confirmed Oamb expres-
sion at the protein level in specific lamina neurons and
glia, including Lawf2 cells previously shown to be oc-
topamine sensitive (Tuthill et al., 2014) (Figure 7C).

Combining transcriptomes and connec-
tomes

A principal goal of our work is to provide a foundation for
combining molecular data such as neurotransmitter and
receptor expression patterns with anatomical or func-
tional connectivity data. One application of expression
information is to constrain mechanistic models of neural
circuits such as the extensively studied motion detection
circuit in the fly eye (reviewed in Mauss et al., 2017; Fig-
ure 7-S1A). The combined availability of expression and
connectomics data for many cell types in a brain region
also makes it possible to systematically identify and fur-
ther explore unusual patterns of receptor or transmitter
expression; for example, cell types in which an otherwise
widely expressed receptor is absent or cells with unusual
combinations of receptor subunits. Below we discuss
three examples, focused on potential signs of synaptic
transmission, of how such patterns can lead to specific
and unexpected hypotheses about circuit function. As
we illustrate, combining expression data with synapse-
level anatomy permits analyses which are inaccessible
to either approach alone.
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Figure 7: Patterns of neurotransmitter receptor expression. A. Neurotransmitter receptors are widely expressed in specific patterns. With the
exception of histamine, most cells express receptors or receptor subunits for nearly all neurotransmitters. B. Expression of the glutamate-gated
chloride channel (GluClalpha), detected using a GFP-tag (green), in the optic lobe. The lamina pattern includes many neurons as well as proximal
satellite, epithelial and marginal glia. A glia-specific nuclear marker (anti-repo) is shown in magenta. C. Octopamine receptor (Oamb) expressing
cells in the optic lobe detected with a protein-trap GAL4 driving expression of a membrane targeted GFP (green). Anti-repo (magenta). In the
lamina (to the top and left of the image), Lawf1/2 and L5 neurons and marginal glia are recognizable.
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Presynaptic cholinergic markers and absence of his-
tamine receptors in some postsynaptic targets: R8
photoreceptors may signal via two fast transmitters

Fly photoreceptors have long been known to release
histamine (Hardie, 1987; Sarthy, 1991). Our data indi-
cate that inner (color vision) R8 photoreceptors also ex-
press the cholinergic markers ChAT and VAChT, sug-
gesting an unexpected additional cholinergic phenotype
(Figure 6A). To confirm these results, we visualized a
tagged VAChHT protein (VAChT-HA; Pankova and Borst,
2017), expressed from the endogenous locus, selec-
tively in photoreceptor cells. These experiments showed
VAChT-HA labeling in medulla terminals of R8 but not
R7 cells (Figure 8A,A’,A”,B), including the specialized po-
larized light-responsive R8-cells in the dorsal rim of the
medulla. The latter express the rhodopsin Rh3 (which
is otherwise expressed in R7s; Fortini and Rubin, 1990),
consistent with the presence of ChAT and VAChT tran-
scripts in the R7 driver line (for which the model inferred
expression for VAChT but not ChAT).

We asked whether the apparent co-transmitter pheno-
type of R8 neurons was reflected in the expression of
neurotransmitter receptors in their different postsynap-
tic partners. Postsynaptic partners of R8 cells identified
by electron microscopy reconstructions include seven
cell types in our dataset: Dm9, Mi1, Mi4, Mi15, R7, L1
and Tm20 (Figure 8C) (Takemura et al., 2013; Take-
mura et al.,, 2015). All of these express one or more
NAChR subunits (Figure 7A). By contrast, expression of
the histamine-gated chloride channels HisC/1 and ort,
which mediate histaminergic transmission by photore-
ceptors (Pantazis et al., 2008), was more selective (Fig-
ure 8C,D): L1, Tm20 and Dm9 express ort, consistent
with previous reports (Gao et al., 2008), while HisCl1
transcripts were detected in the R7 as well as R8 driver
lines, in agreement with another recent report (Schnait-
mann et al., 2018; Tan et al., 2015). However, we did not
find evidence of expression of ort or HisCI1 in Mi4, Mi1
and Mi15, further supporting R8 signaling via a transmit-
ter other than histamine.

We were interested in whether release of ACh and
histamine might occur at spatially distinct locations. In-
sect synapses often consist of multiple postsynaptic sites
apposed to the same presynapse. For cells that re-
lease more than one transmitter, two general distribu-
tions of postsynaptic processes at such multicomponent
synapses are possible (Figure 8E). Postsynaptic cells
with different receptors could be grouped at different sites
based on receptor expression (Figure 8E-left) or occur
together at the same locations (Figure 8E-right). To dis-
tinguish these possibilities for R8 cells, we used EM re-
construction data (Takemura et al., 2013) to map the pre-
dicted expression of histamine receptors in postsynaptic
cells at the single synapse level for all presynaptic sites
of one reconstructed R8 cell (Figure 8F). The resulting
pattern indicates that processes of cell types with and

without histamine receptor expression are often located
near the same R8 presynapse (Figure 8F), whereas this
is not the case for a reconstructed R7 cell (Figure 8G).
This is consistent with the VAChT-HA labeling observed
throughout the medulla terminals of R8s (Figure 8A). This
spatial pattern is compatible with either co-release of his-
tamine and ACh or independently regulated release from
different vesicles at the same sites.

A combined cholinergic and histaminergic phenotype
has been reported for a small group of extraretinal pho-
toreceptors (the Hofbauer-Buchner eyelet) located near
the lamina (Yasuyama and Meinertzhagen, 1999) but
was unexpected for R-cells of the compound eye. Es-
tablishing the functional significance of potential acetyl-
choline release by R8 cells will require further experi-
ments. However, we note that double mutants lacking
both histamine receptors are not completely blind (Gao et
al., 2008), consistent with histamine-independent trans-
mission by photoreceptor neurons. In addition, a very
recent study suggests a role of cholinergic R8 signaling
in the entrainment of the fly’s circadian rhythm to light-
dark cycles (Alejevski et al., 2019), perhaps similar to
that of ACh-release from the Hofbauer-Buchner eyelet
(Schlichting et al., 2016).

Potentially excitatory GABA-A receptors in lamina
monopolar cells

Fast GABAergic transmission via GABA-A receptors is a
major source of inhibition in the nervous system. How-
ever, some GABA-A subunit combinations could medi-
ate depolarizing GABA-signaling: in vitro assays indicate
that homomeric Rdl or heteromeric Rdl/Lcch3 receptors
are typical GABA-gated chloride channels (Zhang et al.,
1995), while Lcch3/Grd form GABA-gated cation chan-
nels (Gisselmann et al., 2004). However, the in vivo sig-
nificance of this difference is unknown. Rdl and Lcch3
were expressed in nearly all neurons in our dataset (Fig-
ures 7A, 9A,B), consistent with the general inhibitory na-
ture of GABA signaling. By contrast, Grd and another
predicted GABA-A receptor subunit, CG8916, were ex-
pressed in a minority of cell types (Figures 7A, 9A,B).
Photoreceptor neurons, for which no major GABAergic
inputs have been identified by connectomics, expressed
none of the four transcripts (Figure 9B). Lamina monopo-
lar L1 and L2 were the only neurons other than pho-
toreceptors that did not express significant levels of Rdl.
However, both express Grd, Lcch3 and also CG8916.
Together with the in vitro findings mentioned above, this
result suggests that some or all GABA-A receptors in L1
and L2 may be cation rather than chloride channels. Re-
markably, lamina monopolar cells in the housefly Musca,
which are thought to have very similar functional prop-
erties to those in Drosophila, depolarize in response to
GABA (Hardie, 1987) but hyperpolarize in response to
histamine (via ort-containing chloride channels). Thus
our data identify a potential link between in vivo elec-
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Figure 8: Molecular and connectomics analyses suggest R8 photoreceptors signal via both histaminergic and cholinergic neurotransmission.
(A,A',A”,B). Expression of VAChT in R8 cells. Expression of a HA-tagged VAChT was induced in R8 cells by recombinase-mediated excision of
an interruption cassette from a modified genomic copy of the VAChT gene (Pankova and Borst, 2017). R7 and R8 cells project to different layers
of the medulla (A, schematic). Single confocal sections show R7 and R8 cells in magenta and anti-HA immunolabeling in green. R7 and R8 cells
(labeled with mAb 24B10) are shown in magenta. Stop-cassette excision in R8 photoreceptors (using sens-FLP) results in VAChT-HA labeling of
R8 terminals in both the main medulla (A’) and the dorsal rim (where R7 and R8 cells project to very similar layer positions) (A”). Stop-cassette
excision in all photoreceptors (using ey3.5-FLP) also produces VAChT-HA labeling in R8 while expression in R7 was not detected (B). Scale bar,
10 pm. C. Heatmap of receptor expression probabilities (color) and relative abundance (numbers; transcripts per million) in R8 targets identified by
EM (at least 5 synapses in Takemura et al., 2013). D. Connectivity network for R8 cells, overlaid with receptor expression. E. Possible distributions
of postsynaptic receptors at R8 synapses. Individual active zones can interact with multiple postsynaptic cells which could be grouped in distinct
ways. F. Classification of postsynaptic cells at individual R8 active zones (Takemura et al., 2013) based on histamine receptor expression. G. Same

analysis as in E but for an R7 cell.
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Figure 9: Using gene expression to functionally interpret circuit structure. A. Different properties of GABA-A receptors in Drosophila observed in
in vitro studies. GABA-A receptor subunits can form either cation or anion channels depending on subunit composition. B. Expression of GABA-A
subunits in selected cell types. C. L1 and two of its target cells form strong reciprocal connections with C2 neurons. D. Distribution of Rdl and
Grd expressing cells at individual C2 synapses. E. Glutamate receptors can also be excitatory or inhibitory. F. Examples of expression patterns
for selected glutamate receptors and transporters. G, H. Morphology of Lai (G) and Dm9 (H) cells. lllustrations based on MCFO images of single
cells. 1, J. Analysis of the input and output pathways of Lai (I) and Dm9 (J) neurons suggests a potentially similar functional role for these cells. The
predicted absence of GluCl-alpha in Dm9 suggests that glutamatergic input from Dm8 to Dm9 may be excitatory.
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trophysiology, in vitro receptor properties and cell type
differences in GABA-A subunit (Rdl or Grd) expression.

We next asked whether depolarizing GABA-signaling
to L1 and L2 was plausible given their synaptic connec-
tivity. Based on synapse counts and our transmitter data,
the main GABAergic inputs to L1 and L2 are C2 and
C3 neurons (Meinertzhagen and O’Neil, 1991; Rivera-
Alba et al., 2011; Takemura et al., 2013; Takemura et al.,
2015). Conversely, L1 is the main input to both C2 and
C3 cells, followed by the cholinergic L1 targets L5 and
Mi1. These strong connections (illustrated for C2 in Fig-
ure 9C) indicate that the effective sign of GABA input to
L1 and L2 is almost certainly of functional significance. In
the illustrated circuit (Figure 9C), L1 cells hyperpolarize
in response to luminance increases (as histamine from
photoreceptors opens ort chloride channels). The result-
ing reduced secretion of glutamate is thought to depo-
larize L1 targets such as Mi1 (via closing of GluClalpha
channels). One plausible, though speculative, scenario,
is that, similar to Mi1, C2 cells also depolarize in response
to light. In this case, GABA-gated cation channels in L1
(formed by Grd and Lcch3) would enable negative feed-
back (counter-acting) from C2 to L1, which for example
could return the membrane potential closer to resting lev-
els — speeding up the response to subsequent luminance
changes. By contrast, opening of conventional GABA-A
receptors (GABA-gated chloride channels) in L1 would
resemble a light response (opening of histamine-gated
chloride channels), and thus provide positive (reinforc-
ing) feedback in this case. The latter possibility appears
less consistent with the transient nature of the L1 (and L2)
response to light ((Jarvilehto and Zettler, 1971; Laughlin
and Hardie, 1978)). Distinguishing these and other pos-
sibilities will of course require future experimental work.

Similar to the findings for histamine receptors de-
scribed above (Figure 8F), again using connectivity data
for the medulla, we observed that cells with differ-
ent GABA-A profiles can be postsynaptic at the same
synapse (Figure 9D). In addition to L1 and L2, Grd ex-
pression indicated several other candidates for cells with
unusual GABA responses (Figures 7A, 9B). In these neu-
rons (e.g., Dm8 or Mi4), Rdl and Grd were detected to-
gether, raising questions such as whether their subcellu-
lar distribution is synapse-specific or whether these sub-
units might co-assemble into channels with yet unex-
plored properties.

Diverse patterns of glutamate receptor expression in
the targets of a single local interneuron type in the
lamina

The diverse expression of glutamate receptor subunits,
which can mediate both inhibitory and excitatory sig-
naling, was particularly striking in the lamina (Figures
7A, 9E,F). Notable patterns include the photoreceptor-
specific expression of EKAR, the predicted absence of
GluClalpha, otherwise broadly expressed in neurons,

from some cell types, including photoreceptors (Fig-
ures 7A, 9F) and its strong expression in epithelial glia.
CG3822, a Kainate-type receptor subunit recently re-
ported to function in presynaptic homeostatic control at
the neuromuscular junction (Kiragasi et al., 2017), was
strongly enriched in the lamina intrinsic Lai cells. Since
Lai neurons are the only known source of vesicular gluta-
mate release in the lamina, CG3822 function in Lai must
also be pre- or perhaps extrasynaptic. T1 and L3, while
not expressing VGlut, might also influence glutamate lev-
els in the lamina via the Eaat1 plasma membrane gluta-
mate transporter. The strong expression of this trans-
porter in T1 rather than glia is another unusual feature of
glutamatergic signaling in the lamina and may be a clue
to the enigmatic function of T1 cells (Tuthill et al., 2013).
These examples further highlight how a transmitter re-
leased by one neuron type, here Lai, is predicted to have
very different effects on target cells due to the receptors
they express.

Comparisons of cell shape, synaptic connectivity
and receptor expression reveal multiple similarities
between local interneurons Lai in the lamina and
Dm9 in the medulla

The combination of highly specific EKAR expression and
the unusual absence of GluClalpha in photoreceptors
prompted us to further explore cellular sources and po-
tential functions for glutamatergic signaling to photore-
ceptor neurons.

Photoreceptor neurons function over an extremely
wide range of light levels, from moonlight to bright sun-
light. One mechanism proposed to enable this behav-
ior is a depolarizing feedback signal from photorecep-
tor targets that increases photoreceptor output under
low light conditions, but reduces output at higher light
intensities (Zheng et al., 2009). As Lai cells express
ort, and thus, like other ort-expressing photoreceptor tar-
gets, are thought to hyperpolarize in response to light,
increased glutamate release from Lai could provide such
light-dependent feedback via EKAR in R-cells. This sce-
nario is consistent with reduced photoreceptor responses
at low light intensities after reduction of Lai output or
EKAR function (Hu et al., 2015). EKARis also expressed
in R7 and R8 cells, which project to the medulla and
are not postsynaptic to Lai. We therefore asked whether
there might be a medulla counterpart of Lai neurons.

Synaptic connectivity data identify Dm9 as a strong
candidate for such a role: Dm9 is both a major pre- and
postsynaptic partner of R7 and R8; it is the only identified
R7/R8 target with these properties (other known R7 or
R8 targets appear to form few if any feedback synapses
on these cells). Remarkably, the overall anatomy of Dm9
cellsis also very similar to Lai (Figure 9G,H): Both Lai and
Dm9 cells span multiple visual columns but the precise
number and distribution of columns innervated by each
individual cell is variable. Finally, Lai and Dm9 share key
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molecular properties: for example, both are glutamater-
gic and express ort histamine receptors. Based on con-
nectivity and gene expression (Figure 9F,J), Dm9 cells
are predicted to receive hyperpolarizing R7 and R8 input
via ort and excitatory input from the photoreceptor targets
L3 and Dm8. Thus, similar to Lai (Figure 9G,I), Dm9 ap-
pears qualified to increase photoreceptor output in the
medulla under low light conditions, similar to a proposed
function of Lai in the lamina.

One notable difference between Lai and Dm9 is that
in contrast to Lai, Dm9 cells receive input from photore-
ceptor neurons with different spectral tuning. This input
involves direct (R7, R8) and indirect pathways (R7 via
Dm8, R1-6 via L3) (Figure 9J). This integration of multiple
spectral inputs could support a role of Dm9 in color pro-
cessing. Indeed, the anatomical and predicted functional
properties of Dm9 match those of an as yet unidentified
ort expressing cell type proposed to contribute to color
opponent signaling between R7 and R8 cells (Schnait-
mann et al., 2018).

Discussion

We present an approach to characterize the function of
neural circuits by combining genetic tools to access their
component cells, TAPIN-seq to measure their transcrip-
tomes, and a probabilistic model to interpret these mea-
surements (Figures 1 to 3). We used this approach to
establish an extensive resource of the genes expressed
in 67 Drosophila cell types, including 53 in the visual sys-
tem, covering photoreceptors, lamina, and components
of the motion detection circuit (Figure 4) and systemat-
ically compare our results to single cell RNA-seq (Fig-
ure 5). Our approach enables an extensive analysis of
neurotransmission in the Drosophila visual system, in-
cluding the neurotransmitters sent and received across
the network as well as transcription factors that poten-
tially regulate neurotransmitter identity (Figures 6 and 7).
We also provide specific examples of integrating tran-
scriptomes and connectomes to illuminate circuit function
(Figures 8 and 9).

Many recent studies have explored gene expression
in neurons. However, only a few of these were aimed
at neurons in genetically tractable organisms and brain
regions for which detailed anatomical data, especially at
the level of synaptic connections, are available. Previous
work in the mouse retina has used both genetic (Siegert
et al., 2012) and single cell approaches (Macosko et al.,
2015) to characterize transcriptional regulators as well
as classify cell types. More recent work in Drosophila
used single cell RNA-sequencing to characterize hetero-
geneity in olfactory projection neurons (Li et al., 2017),
the midbrain (Croset et al., 2018), the optic lobe (Kon-
stantinides et al., 2018), and the whole brain (Davie et
al., 2018). The expression patterns of many genes have
also been mapped in C. elegans neurons, whose con-

nectivity has long been known, although these studies
typically focus on individual genes rather than genome-
wide catalogs (Hobert, 2016). The unique combination
of an extensive genetic toolbox to access individual cell
types in the Drosophila visual system and systematic ef-
forts to map its connectivity, make it well suited for explor-
ing whether a comprehensive catalog of gene expression
is useful for understanding circuit function. Towards this
end, we profiled a diverse array of cell types including all
of the neuronal cell types that populate the lamina and a
subset of cell types in the medulla and lobula complex in-
cluding those known to play a central role in the detection
of motion. We also analyzed a number of cell types re-
siding in deeper brain structures such as the mushroom
body and central complex.

Our approach requires genetic driver lines to obtain
transcriptomes of specific cell populations. The recent
availability of large collections of reagents for split-GAL4
intersections (Dionne et al., 2018; Tirian and Dickson,
2017) make it possible to obtain such lines for virtually
any cell type of interest. This expanding genetic tool-
box works well with our TAPIN-seq method to profile tran-
scriptomes.

In some cases, available driver lines, including some
used in this study, may label some additional cell types.
While drivers with even higher specificity could be ob-
tained through testing of additional split-GAL4 intersec-
tions or perhaps triple intersections (Dolan et al., 2017),
we did not find the contributions of small numbers of ‘off-
target’ cells to be a major limitation for many applications
of expression data. In general, the transcriptomes sup-
port the high specificity of the intersectional lines we used
to access visual system cells (Figure 1). For example, we
found specific expression of known marker genes (Fig-
ures 2H, 4B) and also that most neurons only express
genes for a single neurotransmitter type (Figure 6A). The
availability of these genetic tools also makes it possible to
validate our transcriptome measurements in a way that is
otherwise difficult for single cell RNA-seq studies. Driver
lines also permit repeated access to the same cell type
in multiple animals at defined time points, enabling the
study of behavioral or circadian conditions in individual
cell types without having to sequence the whole brain or
dissected brain regions.

Modifying the one-step affinity capture in the original
INTACT method to a two-step capture in TAPIN-seq in-
creased its specificity, sensitivity, and throughput with-
out the need for time-consuming and labor-intensive cen-
trifugation steps (Figure 1). We initially tried improving
the original INTACT method by using density gradient
centrifugation to purify nuclei prior to the bead capture
step, but this was cumbersome, low throughput, and in-
effective for cell types with few nuclei per brain. In ad-
dition, for reasons that remain unclear, both photorecep-
tors and T4 cells consistently yielded few nuclei with this
approach. Even with TAPIN, the libraries obtained with
some sparser driver lines did not meet the quality con-

20 of 45


http://dx.doi.org/10.1101/385476

bioRxiv preprint first posted online Aug. 5, 2018; doi: http://dx.doi.org/10.1101/385476. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

trol standards we applied. We suspect that the quality of
these sub-optimal libraries can be improved by starting
with more flies, which is simplified by TAPIN-seq’s abil-
ity to use frozen material, enabling the collection of many
flies on multiple days at defined time points. In contrast,
manual or FACS sorting of dissociated cells is more chal-
lenging to scale up, because these more labor-intensive
tissue procurement schemes cannot be simplified in the
same way. It is also worth noting that our tandem affinity
purification approach can improve the specificity of any
immunopurification method that uses a capture antibody
that is cleavable by IdeZ (all IgG subclasses), without re-
quiring expression of a traditional TAP tag (Rigaut et al.,
1999).

TAPIN-seq complements single-cell RNA-seq studies
of neurons in several ways (Ecker et al., 2017; Konstan-
tinides et al., 2018). First, our high-resolution transcrip-
tomes will serve as a reference for interpreting single-
cell measurements. In particular, comparing our expres-
sion catalog to recent single cell maps of the optic lobe
and whole brain highlights the challenges in interpreting
single cell measurements. Several cell types that we
profiled don’t appear as clusters in the single cell map,
while others are grouped into the same cluster. The well-
established neuroanatomy of the optic lobe makes it an
ideal setting to evaluate the accuracy of single cell RNA-
seq measurements and raises a broader caution when in-
terpreting scRNA-seq surveys of less well-characterized
tissues (e.g., the Human Cell Atlas effort; Regev et al.,
2017). the composition of cell types (or states or clus-
ters) observed by scRNA-seq can deviate significantly
from their true abundance and requires validation with
independent methods. Having both deep bulk transcrip-
tomes and single cell maps of the same tissue also pro-
vides an opportunity for developing new analytical tools
that can harness available cell type-identified informa-
tion while clustering single cell data. Second, combin-
ing our approach with single-cell profiling could more ef-
ficiently profile heterogeneity within a brain region or ge-
netically defined cell population. Finally, the complemen-
tarity between bulk and single-cell measurements ex-
tends to other genomic features that can be measured
in TAPIN-seq purified nuclei, including accessible chro-
matin and modified histones. We expect this combination
of genomic tools to help decipher the transcriptional and
epigenetic regulation of neuronal expression programs.

Transcriptome measurements can be of limited utility
because it is challenging to interpret relative transcript
abundance. In this study we developed a probabilis-
tic mixture modeling approach to classify relative abun-
dances into binary on and off states. This model was
a useful guide for interpreting our measurements; most
genes are readily described with the two-state model, al-
though the expression of some genes is not (e.g., Rab17,;
Figure 3-S1L). Even for specific genes whose expres-
sion is more continuous than bimodal, the results still of-
fer a useful family-wide summary of expression patterns.

For example, DPR family members are more broadly ex-
pressed than DIP genes (Figure 4C; Figure 4-S1D), an
observation supported by two recent studies using dif-
ferent methods (Cosmanescu et al., 2018; Venkatasub-
ramanian et al., 2019). Despite our model’s utility, it is
important to remember the many potential sources of
error (minor cell types in driver line patterns, transcript
carry over during TAPIN, biases in RNA-seq library con-
struction and sequencing, etc.) that can affect measure-
ments of relative transcript abundance and the resulting
model inferences. Having observed most discrepancies
between our modeling results and protein-level expres-
sion near the boundary between on and off states, it is
prudent to treat these cases more carefully.

Our resource provides additional foundation for
systematic functional and molecular studies of the
Drosophila visual system. We illustrated how the re-
source can characterize neurotransmission in the net-
work, particularly when combined with connectome in-
formation detailing connectivity between cell types as
well as the grouping of post-synaptic partner cell types.
We determined neurotransmitters used by every cell we
profiled and found two likely cases of co-transmission
(Figure 6A). The expression patterns of the major fast-
acting transmitters histamine, acetylcholine, glutamate
and GABA were comparatively simple: Nearly all neu-
ronal cell types in our catalogue appear to express ex-
actly one of these four transmitters. However, the tran-
scriptomes suggest that many cells also have the po-
tential to release specific neuropeptides, other chemical
messengers such as nitric oxide, or form gap junctions
with other cells.

While selected transmitter markers (e.g., Gad1 or VG-
lut) could also be assigned to cell types using meth-
ods such as immunolabeling or FISH, these approaches
are not practical for comprehensive sampling of mark-
ers across these different modes of cell-cell communica-
tion. This is particularly clear when the expression pat-
terns of neurotransmitter receptors are also considered
(Figure 7A). Our results suggest that, for canonical small
molecule transmitters, neurotransmitter output space is
tightly tuned while input space is not: neurons typically
send just one type of signal but can receive many (Fig-
ures 6 and 7). The expression patterns of neurotrans-
mitter receptors provide further context for determining
circuit mechanisms (Figures 7-S1, 8 and 9). Our results
also implicate transcription factors involved in regulating
neurotransmitter phenotype, including several that ap-
pear to have conserved roles in specifying neuronal iden-
tity in other species (Figure 6-S1).

The availability of connectivity data for many neurons
in the visual system allowed us to interpret neurotrans-
mitter use and receptor distribution in the context of cir-
cuit architecture (Takemura et al., 2013; Takemura et al.,
2015; Rivera-Alba et al., 2011). For example, our data
show expression of both histaminergic and cholinergic
markers in R8 photoreceptors. We further find that some
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major synaptic targets of R8 cells, as identified by elec-
tron microscopy, do not express known receptors for his-
tamine (Figure 8F). Given that R7 and R8 cells were pre-
viously thought to be exclusively histaminergic both re-
sults are unexpected and individually might appear dif-
ficult to explain (Gao et al., 2008). However, in combi-
nation, these findings make a strong case for a dual his-
taminergic and cholinergic transmitter phenotype of R8
cells. In contrast, R7 only expresses the histaminergic
marker Hdc, and all of its targets express a histamine re-
ceptor (Figure 8G).

Finally, our approach especially complements ongoing
efforts to map circuit connectivity, which is complete for
C. elegans, and is becoming accessible on a whole brain
level for Drosophila (Zheng et al., 2018), and for portions
of the mouse brain such as the retina. Methods to ob-
tain and interpret serial electron micrographs, array to-
mography and other methods for mapping connectivity
are rapidly progressing (Swanson and Lichtman, 2016;
Micheva and Smith, 2007; Kebschull et al., 2016). All
told, we are entering a period in neuroscience where con-
nectomics will become pivotal. We expect that genomic
approaches, such as the methods for data collection and
analysis that we describe here, will enhance these efforts
by using transcriptomes to provide, at high-throughput, a
molecular proxy for physiological features that are other-
wise inaccessible to connectomic methods.

Methods

Contact for reagent and resource sharing

Further information and requests for resources and
reagents should be directed to the Lead Contact, Gilbert
L. Henry (henry@cshl.edu). A detailed description
of split-GAL4 hemidrivers (https://bdsc.indiana.edu/
stocks/gal4/split_intro.html) and cell-type specific
split-GAl4 lines is also available (https://www. janelia.
org/split-GAL4).

Experimental models and subject details

Flies were reared on standard cornmeal/molasses food
at 25°C. For profiling experiments adults, 4-7 days of
age, were entrained to a 12:12 light:dark cycle and anes-
thetized by CO, at ZT8 - ZT12. Samples can be stored
indefinitely at -80°C after flash freezing in liquid No. We
used female flies for all anatomical characterizations.

Method details
Anatomical analyses

Details of individual genotypes and labeling methods
used in the characterization of the driver lines and other
anatomical experiments are summarized in Table S5.

Details of the driver lines are provided in Table S1. For
the naming of RNA-seq samples, we identified all drivers
with a main cell type or cell types (e.g. Mi9_d1). Most of
these cell types have been described in detail and were
identified based on prior descriptions (see references in
Table S1; Takemura et al., 2013; Gao et al., 2008; Nern
et al., 2015; Fischbach and Dittrich, 1989; Tuthill et al.,
2013; Aso et al., 2014; Wu et al., 2016; Wolff et al., 2015;
Wolff and Rubin, 2018; Edwards et al., 2012; Helfrich-
Forster et al., 2007; Panser et al., 2016; Mauss et al.,
2015). The driver names do not attempt to include ad-
ditional cells present in some drivers. A few of our cell
types are strictly groups of related cell types (for exam-
ple, the muscle cells or, at a different level of a cell type
hierarchy, the T4 and T5 cells, with four subtypes each,
or R7 photoreceptor neurons, which include R7s of pale
and yellow ommatidia).

Generation and characterization of new driver lines

Split-GAL4 and GAL4 driver lines (Table S1) were used
to express UNC84-2XGFP in defined cell populations.
Previously published driver lines were from the following
studies (see Table S1 for details; Tuthill et al., 2013; Diao
etal., 2015; Aso et al., 2014; Wu et al., 2016; Strother et
al., 2017; Park et al., 2003; Rulifson et al., 2002; Tayler
et al., 2012; Taghert et al., 2001; Brand and Perrimon,
1993; Wu et al.,, 2003; Park et al., 2000; Sweeney et
al., 1995; Wolff and Rubin, 2018; von Reyn et al., 2017).
New split-GAL4 lines were generated as in previous work
(Tuthill etal., 2013; Wu et al., 2016). Briefly, we first iden-
tified GAL4 lines with expression in the cell type of in-
terest by screening images of the expression patterns of
large collections of such lines (Jenett et al., 2012; Tirian
and Dickson, 2017). Typically, several candidate combi-
nations of AD- and DBD-hemidrivers were tested to iden-
tify lines with sufficient specificity.

To characterize new driver lines, we examined both
overall expression pattern in the brain and optic lobe and,
for most lines, confirmed the identity of the main cell type
or types using MultiColor FlpOut (MCFO)-labeled single
cells (Nern et al., 2015). Since details of the expression
patterns of GAL4 or split-GAL4 driver lines can depend
on the particular UAS reporter used, we re-imaged 20
drivers with the TAPIN nuclear marker used for the profil-
ing experiments (Figure 2A). In general, the distribution of
labeled nuclei in these images appeared to match the ex-
pression patterns and specificity expected from the driver
line’s original characterization using a membrane marker.
As expected, a small number of off-target cells were de-
tectable (often more weakly labeled) in many driver lines.

Validation experiments

For validation experiments, we examined expression pat-
terns of tagged proteins expressed in a near native
genomic context using either large BAC-transgenes or
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modifications of the endogenous loci (Nagarkar-Jaiswal
et al., 2015; Diao et al., 2015; Kudron et al., 2018; Lee
et al., 2018).

We classified fkh-GFP and Ets65A-GFP as expressed
or not expressed by comparing nuclear GFP signal in
cells of interest (identified using a split-GAL4 driver) to
background labeling in surrounding cells. Because of
considerable differences in the GFP signal for different
cell types, confocal settings and post-imaging adjust-
ments were done individually for different cell types for
these experiments.

The transgenes used for validation are listed in Table 1
(also see Table S5). In addition, the VAChT-FRT-STOP-
FRT-HA transgene (TKTI}VAChT[FRT-STOP-FRT.HA]
RRID:BDSC_76021) described in (Pankova and
Borst, 2017) was used to examine VAChT expres-
sion in photoreceptor neurons. Flp-recombinase,
either sens-FLP (expressed in R8 cells; Chen et
al.,, 2014) ( fly stock w[*] P{y[+t7.7] w[+mC]=sens-
FLPG5.C}attP18;  wg[Sp-1]/CyO; sens[Ly-1]/TM6B,
Tb[1] (RRID:BDSC_55768) or ey3.5FLP (expressedin all
R-cells; Bazigou et al., 2007) (fly stock P{w[+mC]=ey3.5-
FLP.B}1, y[1] w[*]; CyO/In(2LR)Gla, wg[Gla-1] PPO1[Bc]
(RRID:BDSC_35542) was used to induce VAChT
stop-cassette excision.

Histology

Visualization of split-GAL4 driver line expression patterns
with pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1
and pJFRC225-5XUAS-IVS-myr::smFLAG in VK00005
(Nern et al.,, 2015) or, in a few cases, 20XUAS-
CsChrimson-mVenus in attP18 (Klapoetke et al., 2014)
as reporters was performed as described (Aso et al.,
2014; Wu et al., 2016). Detailed protocols are also avail-
able online (https://www.janelia.org/project-team/
flylight/protocols under “IHC - Anti-GFP”, “IHC -
Polarity Sequential” and “DPX mounting”). Multicolor
Flp-out (MCFO) markers were detected by immunola-
beling with antibodies against HA, FLAG and V5 epi-
topes as described (Nern et al., 2015). Detailed pro-
tocols are also available online (https://www. janelia.
org/project-team/flylight/protocols under “IHC -
MCFQO?”).

For other experiments, brains of female flies were dis-
sected in insect cell culture medium (Schneider’s Insect
Medium, Sigma Aldrich, #S0146) and fixed with 2% PFA
(w/v) (prepared from a 20% stock solution, Electron Mi-
croscopy Sciences: 15713) also in cell culture medium
for 1 h at room temperature. Brains were washed with
0.5% (v/v) TX-100 (Sigma Aldrich: X100) in PBS and in-
cubated in PBT-NGS (5% Goat Serum [ThermoFisher:
16210-064] in PBT) for at least 30 min. Incubations
with primary antibodies and subsequently, after addi-
tional PBT washes, secondary antibodies, were in PBT-
NGS at 4°C overnight. After additional washes with PBT
and then PBS, brains were mounted in SlowFadeGold

(ThermoFisher: S36937) and imaged on a Zeiss LSM
710 confocal microscope using 20x 0.8 NA, 40x NA 1.3 or
63x 1.4 NA objectives. A few specimens were mounted
in DPX following the protocol described in Nern et al.,
2015. For experiments using only native fluorescence,
brains were fixed as above and mounted and imaged af-
ter the initial post-fixation washes.

Primary antibodies used in each experiment are
indicated in Table S5. Primary antibodies were
anti-GFP rabbit polyclonal (ThermoFisher: A-11122,
RRID:AB_221569; used at 1:1000 dilution), anti-GFP
mouse monoclonal 3E6 (ThermoFisher:  A-11120,
RRID:AB_221568; dilution 1:100), anti-dsRed rab-
bit polyclonal (Clontech Laboratories, Inc.: 632496,
RRID:AB_10013483; dilution 1:1000), anti-HA rab-
bit monoclonal C29F4 (Cell Signaling Technologies:

3724S, RRID:AB_1549585; dilution 1:300), anti-
FLAG rat monoclonal (DYKDDDDK Epitope Tag
Antibody [L5], Novus Biologicals: NBP1-06712,

RRID:AB_1625981; 1:200), DyLight 549 or DyLight
550 conjugated anti-V5 mouse monoclonals (AbD
Serotec: MCA1360D549GA or MCA1360D550GA,
RRID:AB_10850329 or RRID:AB_2687576; 1:500
dilution), anti-cockroach allatostatin (Ast7) mouse
monoclonal 5F10 (Stay et al.,, 1992) (also detects
Drosophila AstA Hergarden et al., 2012; Developmental
Studies Hybridoma Bank (DSHB): RRID:AB_528076;
dilution 1:5), anti-CadN rat monoclonal DN-Ex #38
(DSHB: RRID:AB_528121; dilution 1:20. Iwai et
al.,, 1997), anti-chaoptin mouse monoclonal 24B10
(DSHB: RRID:AB_528161, dilution 1:20. Fujita et al.,
1982), and anti-Brp mouse monoclonal nc82 (DSHB:
RRID:AB_2314866; dilution 1:30. Wagh et al., 2006).

Secondary antibodies (all from Jackson ImmunoRe-
search Laboratories, Inc) were DyLight 488-AffiniPure
Donkey Anti-Mouse IgG (H+L): 715-485-151, 1:500 di-
lution; DyLight 594 AffiniPure Donkey anti Rabbit IgG
(H+L): 711-515-152, 1:300 dilution; Alexa Fluor 647
AffiniPure Donkey Anti-Rat IgG (H+L): 712-605-153,
1:300 dilution; Alexa Fluor 594 AffiniPure Donkey Anti-
Mouse IgG (H+L): 715-585-151,1:300 dilution; Alexa
Fluor 647 AffiniPure Donkey Anti-Mouse IgG (H+L): 715-
605-151, 1:300 dilution and Alexa Fluor 488 AffiniPure
Donkey Anti-Rabbit IgG (H+L): 711-545-152, 1:1000 di-
lution.

Image processing

Image analyses and processing were mainly done us-
ing Fiji (http://fiji.sc)and Vaa3D (Peng et al., 2010).
Brightness and contrast were adjusted separately for in-
dividual images and channels. Figure panels were as-
sembled using Adobe Indesign. This included selection
of fields of view and adjustments of image size. Some
images were rotated or mirrored. In some panels with
rotated images, empty space outside the original image
was filled in with zero pixels. Most of the images in Fig-
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Genotype RRID

PBac{y[+mDint2] w[+mC]=fkh-GFP.FPTB}VK00037 BDSC_43951
PBac{y[+mDint2] w[+mC]=Ets65A-GFP.FLAG}VK00037 BDSC_38640
Mi{PT-GFSTF.0}Nos[MI09718-GFSTF.0] BDSC_60278
Mi{Trojan-GAL4.1}0amb[MI12417-TG4.1] BDSC_67506
Mi{Trojan-GAL4.1}Lim3[MI03817-TG4.1] BDSC_67450
Mi{PT-GFSTF.1}klg[MI02135-GFSTF.1] BDSC_59787
Mi{PT-GFSTF.2}GluClalpha[MI02890-GFSTF.2] BDSC_60533
Mi{PT-GFSTF.0}TfAP-2[MI04611-GFSTF.0] BDSC_61776
Mi{Trojan-GAL4.2}kn[MI15480-TG4.2] BDSC_67516
pJFRC12-10XUAS-IVS-myr::GFP in attP2 BDSC_ 32197
pJFRC19-13XLexAop2-1VS-myr::GFP in su(Hw)attP8 BDSC_32211

pJFRC21-10XUAS-IVS-mCD8::RFP in attP18

Table 1: Transgenes used to validate protein expression.

ure 1-S1C,C’ and Figure 1-S2 show resampled views that
were generated from three dimensional image stacks us-
ing the Neuronannotator mode of Vaa3D and exported as
TIFF format screenshots.

INTACT purification of nuclei

Frozen adult flies were decapitated by vigorous vortex-
ing. Heads or wings/appendages were then collected
on cooled metal sieves (H&C Sieving Systems: 1296,
1297, 1298, 1301). Both flies and purified frozen ma-
terial can be stored indefinitely at -80°C. In a typical
experiment 100-500 frozen heads were added to 5ml
of 20mM gS-glycerophosphate pH7, 200mM NacCl, 2mM
EDTA, 0.5% NP40, 0.5mM spermidine, 0.15mM sper-
mine, 1TmM DTT, 1X complete protease inhibitor (Sigma:
5056489001), 3mg/ml BSA (ThermoFisher: AM2618),
1mg/ml torula yeast RNA (ThermoFisher: AM7118),
0.6mg/ml carboxyl coated Dynabeads (ThermoFisher:
14306D) and 2ug anti-GFP antibody (ThermoFisher:
G10362, RRID:AB_2536526). Homogenization was car-
ried out on ice by 50 tractions in a Dounce homoge-
nizer using the tight pestle followed by filtration over
a 10um cup filter (Partec: 0400422314). Released
chromatin and broken nuclei were adsorbed to carboxyl
coated magnetic beads for 30 minutes at 4°C with con-
stant rotation. Beads were removed on a magnetic
stand and the supernatant was diluted to 50ml with
20mM p-glycerophosphate pH7, 200mM NaCl, 2mM
EDTA, 0.5% NP40, 0.5mM spermidine, 0.15mM sper-
mine, 1mM DTT and 1X complete protease inhibitor
(Sigma: 5056489001), filtered over a 1um cup filter
(Pluriselect: 435000103) and split into two equal vol-
umes. A 40% Optiprep (Sigma: D1556), 20mM g-
glycerophosphate pH7, 2mM EDTA and 0.5% NP40 so-
lution was then gently placed under each aliquot, fol-
lowed by a lower layer of 50% Optiprep, 20mM -
glycerophosphate pH7, 2mM EDTA and 0.5% NP40. Nu-
clei were then pelleted on to the 50% layer for 30 minutes
at 2300Xg. Purified nuclei were passed over a 10um

cup filter, diluted to 10ml with 20mM S-glycerophosphate
pH7, 200mM NaCl, 2mM EDTA, 0.5% NP40, 0.5mM
spermidine, 0.15mM spermine, 1mM DTT and 1X com-
plete protease inhibitor and incubated with 30l of protein
G Dynabeads (ThermoFisher: 10004D) for 40 minutes
on ice with occasional agitation. Bead-bound nuclei were
recovered on a magnet stand followed by a 20 minute
incubation on ice in 9mls of 20mM S-glycerophosphate
pH7, 300mM NaCl, 1M urea, 0.5% NP40, 2mM EDTA,
0.5mM spermidine, 0.15mM spermine, 1mM DTT, 1X
complete protease inhibitor, 0.075mg/ml torula RNA and
0.05U/ml Superasin (ThermoFisher: AM2696). Nuclei
were then recovered on a magnet stand, resuspended
in 1ml of the previous buffer, passed over a 10um cup fil-
ter, a 5ul aliquot was withdrawn for quantitation and the
remainder of the sample solubilized in Arcturus Picopure
RNA extraction buffer (ThermoFisher: KIT0204).

TAPIN purification of nuclei

100-3000 frozen heads were added to 5ml of sodium
acetate pH8.5, 2.5mM MgCl,, 250mM sucrose, 0.5%
NP-40, 0.6mM spermidine, 0.2mM spermine, 1mM DTT,
1X complete protease inhibitor, 0.5mg/ml torula RNA,
0.6mg/ml carboxyl coated Dynabeads and 2ug anti-GFP
antibody (Table S6). Homogenization was carried out
on ice by 50 tractions in a Dounce homogenizer using
the tight pestle followed by filtration over either a 10 or
20pum cup filter (Partec: 0400422314 or 040042315).
Released chromatin and broken nuclei were adsorbed to
carboxyl coated magnetic beads for 30 minutes at 4°C
with constant rotation. Unbound antibody was removed
by incubating the sample on ice for 20 minutes with
100ul of UNOsphere SUPra resin (Biorad: 1560218),
which was previously washed 2X with 500mM sodium
acetate ph8.5/0.5% NP40 and 2X 20mM sodium ac-
etate ph8.5/0.5% NP40. After the resin was removed
on a 10um cup filter and the carboxyl beads on a mag-
net stand, the nuclei-containing supernatant was mixed
with an equal volume of 500mM sodium acetate pH8.5,
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250mM sucrose, 6mM EGTA, 6mM EDTA, 0.6mM sper-
midine, 0.2mM spermine, 1TmM DTT, 1X complete pro-
tease inhibitor, 0.25mg/ml torula yeast RNA and 30l
Protein A Dynabeads (ThermoFisher: 10002D) (Table
S6). A 2 hour incubation on ice with occasional agita-
tion was used to recover tagged nuclei. Bead-bound nu-
clei were then recovered on a magnet stand and washed
twice with 250mM sodium acetate ph8.5, 250mM su-
crose and 0.1% NP40 (Table S6). Nuclei were then re-
leased at 37°C for 1 hour by incubation in 50l of 10mM
Tris pH7.5, 2.5mM MgCl,, 0.5mM CaCl,, 250mM su-
crose, 0.1% NP40, 1mg/ml torula RNA, 40 units RNAsin
(Promega: N2515), 2 units DNAsel (NEB: M0303L), 320
units IdeZ protease (NEB: P0O770S) (Table S6). The sam-
ple was diluted to 100ul with 10mM Tris pH7.5, 2.5mM
MgCl,, 0.5mM CaCl,, 250mM sucrose and 0.1% NP40,
EGTA was added to 1mM and the suspension was rapidly
triturated 100 times. After returning the sample to a mag-
net stand, 90uls of buffer containing released nuclei was
removed and added to 1.5ul of Protein G Dynabeads
that were previously resuspended in 10ul of 10mM Tris
pH7.5, 2.5mM MgCl,, 0.5mM CaCl,, 250mM sucrose
and 0.1% NP40. The second binding reaction was run
for 1-3 hours on ice with occasional agitation, followed
by two 250l washes in 10mM Tris pH7.5, 2.5mM MgCl,,
0.5mM CaCl,, 250mM sucrose and 0.1% NP40. Prior to
the last wash a 5ul aliquot was removed for quantitation
and the remainder of the sample was solubilized in Arc-
turus Picopure RNA extraction buffer.

RNA-seq library construction

Nuclear RNA was DNAsel (Qiagen: 79254) treated
and purified using the Arcturus PicoPure (ThermoFisher:
KIT0204) system as instructed by the supplier. Purified
RNA was mixed with a 1:100,000 dilution of ERCC stan-
dard RNA mix #1 (ThermoFisher: 4456740) and ampli-
fied using the Nugen Ovation v2 system (Nugen: 7102-
32). cDNA was then blunted, ligated to barcoded linkers
(Nugen: 0319-32, 0320-32) and sequenced on an lllu-
mina Hiseq 2500 to 50bp read length using Rapid Run
flow cells.

In total we built 266 RNA-seq libraries, including 46
INTACT-seq, 196 TAPIN-seq, 8 total RNA libraries from
dissected tissues, and 16 control libraries that we used to
characterize each INTACT/TAPIN-seq step (Figure 2C,
Table S1).

RNA-seq data processing

We trimmed five nucleotides from the 5’ end of reads us-
ing seqtk (https://github.com/1h3/seqtk) to remove
potential contaminating adapter sequence from the Nu-
Gen Ovation kit. We estimated the abundance of an-
notated genes using kallisto (v0.43.1; Bray et al., 2016)
to pseudo-align trimmed reads to the fly transcriptome
(cDNA and ncRNA transcript sequences from ENSEMBL

release 91, based on FlyBase release 2017_04), ERCC
spike-ins, and the INTACT construct sequences GAL4-
DBD, p65-AD, and UNC84 2XGFP. ERCC, INTACT tag
constructs, and rRNA genes were removed from the
abundance tables and the estimated abundances of the
remaining genes were renormalized to one million total
transcripts. The ERCC spike-ins and nuclear yield val-
ues allowed us to convert relative transcript abundance
(in Transcripts Per Million, TPM) to absolute abundance
(Figure 3-S1G). However, we only used relative abun-
dance for our analyses. We also aligned the trimmed
reads to the genome using STAR (v2.5.3c; Dobin et
al., 2013) and evaluated gene body coverage bias us-
ing Picard (v 1.9.1; http://broadinstitute.github.
io/picard).

We used three criteria to quantify the quality of each li-
brary: the number of genes detected, the pearson corre-
lation between transcript abundances measured in repli-
cates, and the cDNA yield. We used only high-quality
libraries (at least 8,500 genes detected, 3ug cDNA yield,
and 0.85 Pearson’s correlation of transcript abundances
in two biological replicates) as input to the model de-
scribed below.

Comparison to published single cell and FACS-seq
datasets

We obtained genes reported to mark the single cell clus-
ters in a recent scRNA-seq study of the optic lobe (Kon-
stantinides et al., 2018). We also obtained the cluster
assignments for each single cell in this dataset from the
SCope database (Davie et al., 2018), using Seurat clus-
tering resolution 4.0, as reported by the authors. We an-
alyzed FACS-sorted RNA-seq samples reported by Kon-
stantinides et al. by downloading the raw sequencing
reads from the NCBI Sequence Read Archive (https://
www.ncbi.nlm.nih.gov/sra) and estimating transcript
abundance using kallisto and the same transcriptome in-
dex as above.

To compare actual and predicted cluster sizes, we
used the following numbers for cells per type: Cell
types that are thought to be present once (L1, L2,
L3, L4, L5, T1, Mi1, T2, T3, Tm2, Tm9, C2,C3,
T4a,T4b,T4c,T4d,T5a,T5b,T5¢,T5d) or approximately
once (Dm8, Tm3) per medulla column based on EM stud-
ies (Takemura et al., 2013; Takemura et al., 2015; Take-
mura et al., 2017) and light microscopy of specific driver
lines (for example, T4/T5 Mauss et al., 2014; lamina cells
Tuthill et al., 2013, T4 inputs Strother et al., 2017, Dm8
Nern et al., 2015) were estimated as 1 cell/column * 750
columns/medulla * 2 hemispheres = 1500 cells per brain.
Estimates for Dm12 ( 120 x 2 cells per brain. Nern et al.,
2015) and Lawf2 ( 140 x 2 cells per brain, Tuthill et al.,
2014) were as published. We performed new counts for
Pm3 (mean +/- SD 37 +/- 3 cells per optic lobe ; n = 4 op-
tic lobes; driver line SS00328) and Lawf1 (151+/-7 cells
per optic lobe; n=4 optic lobes; 2 optic lobes each for
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driver lines SS00689 and SS00800). No precise count
was available for Tm5c; since this cell type is known to
be present in many but not all medulla columns, we used
an estimate of 400 cells per optic lobe x 2 hemispheres
= 800 cells per brain (Takemura et al., 2013; Melnattur
et al., 2014; Karuppudurai et al., 2014).

To compare our bulk TAPIN-seq profiles to published
single cell datasets, we used non-negative least squares
regression to model each bulk TAPIN-seq profile as
a linear weighted sum of single cell clusters and a
profile-specific residual (TAPIN ~ cluster). We began
with single-cell expression matrices extracted from the
loom files deposited in the SCope database, using the
SCopelLoomR package (Davie et al., 2018). After nor-
malizing the transcriptome of each cell from transcript
counts to counts per million, we calculated the mean
transcriptome for each single cell cluster. We then se-
lected genes that were enriched in either single cell clus-
ters or TAPIN-seq cell types, using the following crite-
ria (adapted from Cao et al., 2019): union of the top-
50 genes that were most enriched relative to the aver-
age of all other clusters (or TAPIN-seq cell types) and
the top-50 genes that were most enriched relative to the
maximum level in all other clusters (or TAPIN-seq cell
types). We then performed NNLS regression using the
Lawson-Hanson implementation (Lawson and Hanson,
1974) available through the nnils R package (Mullen and
van Stokkum, 2012). To visualize the results, we created
heatmaps of the regression coefficients, normalizing the
values for each single cell cluster across TAPIN-seq cell
types.

We also performed the NNLS regression in the oppo-
site direction (cluster ~ TAPIN, explaining single cell clus-
ters as combination of TAPIN-seq profiles), as we thought
this direction would more naturally describe mixed clus-
ters composed of multiple cell types (e.g., all photore-
ceptors, or all monopolar cells). In practice however, this
regression assigned coefficients of exactly zero to sev-
eral TAPIN-seq profiles — as expected given the power
of NNLS to recover sparse solutions (Slawski and Hein,
2013) and the collinearity amongst TAPIN-seq profiles
(e.g., highly correlated expression amongst photorecep-
tor subtypes). In contrast, the TAPIN ~ cluster regression
correctly matched mixed clusters with the corresponding
TAPIN-seq profiles.

Inferring expression state from transcript abundance

We begin with a catalog of S RNA-seq samples gener-
ated from nuclei isolated from cell type cell(s) and the
estimated abundance (in TPM), E,, of transcripts from
gene g in each sample s. We consider only protein-
coding genes with at least 10 TPM abundance in at least
one sample (n=12,377 of 13,931 total coding genes).

To interpret £, we assume that all genes express in
either an 'on’ or an ’off’ state. Our goal is to infer from
these abundances the probability that each gene is ex-

pressed in each cell type, P(z,. = on). Depending on
the cell types in our catalog, we will observe some genes
in both on and off states (bimodal), while others are ex-
clusively off (unimodal-off) or on (unimodal-on). We deal
with these scenarios in turn below.

Assuming that a gene is bimodal, we model its expres-
sion as arising from a mixture of two gene-specific log-
normal distributions describing expression in cells where
the gene is off, P(E,|z = off), and those where the gene
is on, P(E,|z = on), combined with a mixing weight,
m4. We use the same standard deviation for both on and
off distributions to ensure a monotonic relationship be-
tween transcript abundance and the posterior probability
of the on state. If we use different standard deviations
for each component distribution, the wider one would be-
come more probable than the narrower one at both low
and high expression levels.

log Ey|z ~ N (pigz, 04)

We estimate the posterior probability of the on state
(assuming bimodal expression):

P(z4s = on|bimodal) =
mgp(Eys|z = on)
ng(Egs|Z = on) + (1 - 7Tg)p(Egs‘Z = Off)

We treated each replicate sample of the same driver
as an independent probe of the same underlying driver-
line expression state. To combine replicates of the same
driver we sum over their likelihoods:

P(z4q = on|bimodal) =

7T£7 Hs p(E!JS'Z = On)
T [[, P(Eys|z = on) + (1 — my) [ [, p(Eys|z = off)

Similarly, to combine samples from the same cell type
we sum over their likelihoods:

P(z4. = on|bimodal) =

7y [T, p(Egs|z = on)
7y [, p(Egslz = on) + (1 mg) T1, p(Egs| = = off)
We estimated parameters for each gene-specific mix-

ture model by maximizing the likelihood for the observed
sample-level data:

L= HH(WQP(Egslz = Onvﬂgzaag)‘f'
g s
(1 - 7-I-Q)P(E‘gslz = Oﬁ7 /’[’g27o-g))

Because we assume independence of genes, we sep-
arately optimized the model parameters for each gene.
To model the possibility that a gene is unimodally ex-
pressed across the cell types we analyzed, we also
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model the data using a single log-normal distribution, es-
timating the distribution parameters 1 and ¢ and estimat-
ing the data likelihood as:

L= HHP(EgsLLLg’ Ug)
g S

Deciding whether a gene is bimodally or unimodally
expressed is an example of the model selection prob-
lem in statistics. To compare the quality of the unimodal
and bimodal models for each gene, we used a recently
developed approach to leave-one-out cross-validation
that uses Pareto-smoothed importance sampling (PSIS-
LOO; Vehtari et al., 2016). Specifically, we performed
10-fold cross validation, by randomly holding out 1/10 of
the samples as a “test” set (requiring that at least one
replicate of each driver exist in the remaining “training”
set), fitting the models using only the training data, and
then evaluating the likelihood of the test data using the
fitted parameters. Each of the ten cross-validation fits, i,
returns an ensemble of S=500 draws from the posterior
distribution of the model parameters. We estimated the
expected log pointwise predictive density (elpd) of each
cross-validation fit by evaluating the likelihood of each
held-out dataset i using each parameter draw s :

draws

S pwil0ss))

elpd; = lOg(draws

We then combined the pointwise log-likelihoods for
each cross-validation fit to calculate a single estimate for
each model:

el/p\d:Zel/p\di

To compare the unimodal (u) and bimodal (b) models,
we calculated the difference in elpd as well as its standard
error:

— —b —u
Aelpd = elpd — elpd

— —Db —u
se(Aelpd) = \/n‘/;"(elpdi —elpd, )

We then picked the model with the higher elpd, unless
the difference in elpd was within two multiples of its stan-
dard error (abs(Ae/lp\d) <2 se(Ae/lp\d)), corresponding
approximately to the half-width of a 95% confidence in-
terval in a normal sampling distribution) in which case we
considered the two models’ performance to be indistin-
guishable and chose the simpler unimodal model.

If we decide a gene is unimodal, we must still decide
if it is expressed or not. To model the expression state
of unimodal genes, we created two separate log-normal
distLigutions of abundances of confidently bimodal genes
(Aelpd > 10) using samples where they were either esti-
mated to be on according to the bimodal model (p(z,4s =
on|bimodal) > 0.9) and where they were estimated to be

off (p(z4s = on|bimodal) < 0.1), combined with a mix-
ing weight, 7, set to the fraction of datapoints that were
estimated to be 'on’ according to the bimodal model.

log Ey|z ~ N (pz, 02)

We estimate the posterior probability of the on state
assuming unimodal expression as:

P(z4 = onjunimodal, p1g) =

7p(j1g|= = on)
7P {11g1= = o) + (L — M)p(j1y = = Of)

To build the final matrix of P(z,s = on) calls, we used
bimodal estimates for genes where the bimodal model
was a better fit than the unimodal model, and the uni-
modal estimates for the remaining genes.

P(zgs =0N) =

—b —u
P(z,, = on|bimodal), felpd (g) >elpd (9)
and Aelpd > 2 - se(Aelpd),

P(z, = onjunimodal), otherwise

We did not include the transcriptomes of the dissected
samples in the mixture models because we were con-
cerned that their cellular heterogeneity would violate our
assumption of binary gene expression in each sample.
That is, genes expressed in a subset of the cells of a dis-
sected sample would give rise to transcript abundance in-
termediate between the off and on states, and thus make
it more difficult to accurately infer the component distri-
butions. However, in some cases the dissected sam-
ples could be useful for interpreting transcript levels in
the cells that we profiled, by providing examples that ex-
tend the observed dynamic range. For example, in the
case of a gene expressed in a dissected tissue, but not
in the cells that we specifically profiled, the dissected lev-
els would add “on” examples that would make it easier to
interpret the levels in the cell types as “off’. To use the
dissected samples to better model dynamic range, we
added two “dummy” samples to each model: the mini-
mum and maximum observed level across both the cell
catalog and the dissected samples. This choice allowed
us to use the dissected levels if they in fact outflanked the
cell type-specific levels, while not confusing the model
with intermediate abundance levels. Once the models
were fit, we could use the inferred parameters to esti-
mate expression probabilities for samples that were not
used in the model fit. For example, we estimated the
probabilities of expression in the dissected samples to
search for genes expressed exclusively in the dissected
samples and not in the anatomically defined cell type li-
braries, indicating potential markers for cells that we did
not specifically profile.

We implemented all models using RStan (Stan De-
velopment Team, 2017; Carpenter et al., 2017) to infer
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the posterior distribution of unknown parameters using
hamiltonian Markov chain Monte Carlo. We used the
same weak prior (N(7,5)) for the mean log-expression
levels of both on and off components, allowing us to use
Stan’s positive_ordered data type to describe the location
of the two components.

Evaluating model accuracy

To evaluate the accuracy of the mixture modeling ap-
proach we created a benchmark set of expression data
extracted from FlyBase. Specifically, we queried the
FlyBase website (http://flybase.org) for genes ex-
pressed in the optic lobe or the photoreceptor. The result-
ing benchmark set included 193 positive and 4 negative
expression datapoints. We quantified the model’s accu-
racy on this benchmark in two ways. First, we quantified
concordance between the benchmark expression state
and our model’s inferred state. Second, we computed
the cumulative distribution function of the inferred prob-
abilities of expression for the positive benchmark data-
points.

Expression-based tree of cell types

To study cell relationships, we used phylogenetic tree-
building to compare their expression profiles. We first
selected a subset of genes with on-component means
of at least exp(3) ~21 TPM and difference between on
and off components of at least exp(1.5) ~4.5 fold. We
then encoded the expression profile of each cell as a “se-
quence” of expression states, where each position rep-
resents a gene, and the character indicates the gene is
expressed (‘A, P(z4. = on) > 0.8), not expressed (‘'C’,
P(z4. = on) < 0.2), or its expression is uncertain (‘N’;
0.2 < P(z4. = 0n) < 0.8). We computed the Hamming
distance between pairs of expression ‘sequences’ con-
sidering only unambiguous positions, using the dist.dna()
routine in the ape R package (Paradis et al., 2004). We
then used the minimum evolution approach to estimate
the ‘phylogeny’ of the cells, using the balanced weighting
scheme (Desper and Gascuel, 2002), as implemented in
the ape fastme.bal() routine. We then built trees from
1000 bootstrapped replicates and quantified the support
for each branch on the original tree. We visualized the
tree using the phytools R package (Revell, 2012).

Identifying marker genes

We identified marker genes specifically enriched in indi-
vidual cell types and groups of cells (photoreceptor, glia,
muscle, neuron) by searching for genes inferred to be
almost exclusively expressed in a single cell type or cell
group (p(on) > 0.9 for all cells within a group, and at most
two cells outside a group) and with transcript abundance
higher than all cells outside the group.

Evaluating expression patterns for genes with differ-
ent functions

We used FlyBase Gene Groups (release 2018_02) to as-
sign functions to genes, and considered the most termi-
nal groups in the hierarchy that had at least 10 genes.

Mapping receptor expression onto synapses

To map receptor expression onto synaptic connectivity,
we first obtained synapse pairs from Takemura et al., to
identify synaptic targets of R8 (cell #111), R7 (cell #205),
and C2 (cell #214) cells in the medulla (Takemura et
al., 2013). When multiple instances of a cell type were
available in the synaptic table, we chose the one with
the greatest number of synaptic partners. For target cell
types that we profiled with TAPIN/INTACT-seq, we dis-
cretized their expression as either on (p(on) > 0.8) or off
(p(on) < 0.8). For cell types that we did not profile, we
classified them as unknown receptor expression.

Data and software availability

All raw and processed transcriptome data is available
from NCBI GEO (accession GSE116969). The shell
scripts used to process the raw RNA-seq data, and the R
and Stan programs that implement the mixture model as
well as generate all figures and tables in this paper are
available at github (http://github.com/fredpdavis/
opticlobe). The cell type-level expression table can be
explored interactively at http://www.opticlobe. com.
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Figure 1-S1: Whole brain expression patterns of new driver lines generated in this study. A. Maximum intensity projection of confocal stacks
taken from whole fly brains (only one optic lobe is shown). Expression patterns of the driver lines (myristoylated-GFP) are in green and a neuropil
marker is in magenta. Imaging parameters and brightness and contrast were individually adjusted for each sample. B, B’. T4 and T5 cells comprise
four subtypes (a,b,c,d) each of which project to specific layers of the lobula plate (B’). C, C'. Individual T4 and T5 driver lines label combinations
of subtypes but show preferential expression in some subtypes. Subtypes were identified by their projections to specific layers in the lobula plate
(C,C’). For example, T5_d2 mainly labels lobula plate layers one and two, indicating expression in T5a and T5b. Each of the lower panels is a
higher magnification view of the lobula plate region (C’). In (C) both the driver and the split identifier are indicated in the lower left and right corner
respectively.
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Figure 1-S2: Optic lobe patterns of driver lines. A. Optic lobe expression patterns of new driver lines used in this study. All images orient the
mediolateral axis of the brain vertically and are resampled substack projections generated from high resolution (63x) confocal stacks. B. Examples of
segmented single cells illustrating cell morphology (left), the complete optic lobe expression pattern (middle) or individual cells labeled by MultiColor
FlpOut (MCFO, right). In all images the neuropil marker is in gray and both the targeted cell type and driver are indicated in the lower left and right
corner respectively. 35 of 45
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Figure 2-S1: Two variants of nuclei capture, INTACT and TAPIN. A. We used an INTACT-seq variant, that we originally developed for mouse (Mo
et al., 2015), that purifies nuclei by differential centrifugation. B. TAPIN-seq replaces the space- and time-intensive centrifugation with a two-step
capture enabled by antibody hinge cleavage with the bacterial protease IdeZ. Both protein A and protein G bind the Fc region, while only protein
G is able to bind F(ab’).. C. Libraries built from more nuclei have more transcript molecules (estimated using synthetic spike-ins). D. Nearly all
libraries showed relatively unbiased positional coverage across gene bodies. E. The maximum bias in positional coverage observed in each library
was inversely correlated with cDNA yield, although with large variance in bias for lower yield libraries. F. T4.T5 transcriptomes of female (y-axis)
and male (x-axis) flies are well correlated, but also recover known sex-specific genes including RNA on X 1 (roX7) and roX2 (Amrein and Axel,
1997) and yolk protein 1 (Yp7) and Yp3 (Belote et al., 1985). G. Estimated transcript abundances were reproducible as evaluated by Pearson
correlation (of log-transformed transcript abundance) between biological replicates (black), alternative drivers for the same cell type (orange), or
comparing TAPIN to INTACT profiles (blue).
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Figure 2-S2: TAPIN-seq vs FACS-seq comparison. A. TAPIN-seq expression of marker genes identified from an independent FACS-seq dataset
covering 12 cell types we also profiled (Konstantinides et al., 2018). We defined marker genes for each cell type as the top-10 most highly expressed
genes relative to the mean of all cell types, requiring at least 4x higher abundance than the mean and a relative abundance of at least 50 TPM.
B. We more broadly compared the TAPIN-seq and FACS-seq datasets by first identifying cell type-enriched genes within each dataset (at least
two-fold higher than mean expression; at least 50 TPM in one sample) and then quantifying the degree of overlap between datasets using the
overlap coefficient: 100 * (# genes enriched in both TAPIN-seq AND FACS-seq) / minimum(# genes enriched in TAPIN-seq, # genes enriched in
FACS-seq )).
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Figure 3-S1: Overview of INTACT-seq and TAPIN-seq libraries. A. Libraries with fewer nuclei had greater carry-over of ninaE transcript, which
encodes the abundant rhodopsin in the fly eye. The upper outliers are libraries made from R1-6 photoreceptors, the only cells that express ninaE.
The lower outliers are appendage muscle libraries created after heads are removed from the fly bodies, effectively eliminating ninakE carry-over from
photoreceptors. B,C. Modeling the distribution of ninaE correctly distinguishes true expression by R1-6 from transcript carry-over in the remaining
samples. D. Distribution of mean on-state transcript abundance across all modeled genes. E. Distribution of dynamic range across all modeled
genes. F. Concordance of inferred expression states between replicates. Concordance was computed as the number of genes predicted to express
(p(on) > 0.8) or not (p(on) < 0.2) in both replicates divided by the number of genes predicted to express or not in either replicate. G. Cumulative
distribution of inferred expression probabilities for gene/cell pairs reported to express in FlyBase (n=193 positive benchmark points). Our mixture
model correctly inferred expression of 179 of the 193 gene/cell pairs. The 14 discordant pairs involved six genes (labeled in black). H-M. Modeling
results for the six genes with benchmark mismatches. The on and off components are represented as orange and blue curves, respectively. Black
points represent the inferred probabilities of expression for all drivers. Red points highlight the drivers where the model results disagreed with the
benchmark. The transcript abundance (x-axis) reflects the average of all “high quality” replicates (minimum two per cell type).

FIGURE 3 - Supplemental 2

Figure 3-S2: Validation of fkh and Ets65A model inferences. A,B. To evaluate our modeling results for fkh and Ets65A we evaluated protein
expression in several cell types (related to Figures 3F-H) using GFP-fusion proteins (METHODS). The indicated cell types (lower left corner) were
visualized with a membrane marker (magenta). The second Mi15 panel (in B) includes examples of occasional cells without detectable Ets65-GFP
expression (arrows).
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Figure 4-S1: TAPIN-seq profiles identify genes enriched in cell types and groups. A. Cell adhesion molecules specifically expressed across our
transcriptome catalog. B-D. The expression pattern of all beat, DIP, and Dpr family members depicted as heatmaps of probabilities of expression
(left), heatmaps of relative transcript abundance (middle), or cumulative density curves of normalized expression level (right). The density curves,
each depicting a bimodally expressed gene in the gene family, show expression levels that were normalized using the mean expression levels of
the modeled off an on states for each gene; normalized level = (I0gE - pio¢#) / (ton — oy £). The density curves illustrate that DIP genes are sparsely
expressed, followed by beat and Dpr genes. Of the three families, the Dpr genes exhibit transcript abundance that appears more continuous
between the estimated off and on states rather than discretely bimodal. E,F. The number of interacting pairs of extracellular protein pairs (Ozkan
et al., 2013) expressed by pairs of cells in the lamina (E) is not sufficient to predict the synaptic connectivity of these cells (F; data from Rivera-Alba
et al., 2011). To match our expression data, we summed the synapse counts for the individual R1-R6 photoreceptors originally reported by Rivera-
Alba et al., 2011. For the same reason, we also duplicated the subtype-unidentified Lawf synapse counts as separate Lawf1 and Lawf2 entries in
the connectome matrix.
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A. TAPIN-seq profiles modeled as weighted sum of optic lobe scRNA-seq clusters
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Figure 5-S1: Regressing TAPIN-seq profiles against optic lobe single cell clusters. A. We used non-negative least squares regression to model
each TAPIN-seq profile as a linear weighted sum of optic lobe single cell clusters (Konstantinides et al., 2018). The heatmap represents the
regression coefficients of each single cell cluster (rows) contributing to the TAPIN-seq profile of each cell type, normalized within rows.
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Figure 5-S2: TAPIN-seq expression of genes marking single cell clusters. A. We evaluated expression of marker genes for each optic lobe single
cell cluster (as reported in Konstantinides et al., 2018) in our TAPIN-seq profiles of visual system neurons. If a single cell cluster marker corresponds
to one of our identified cell types, we expect to see its marker genes highly enriched in the corresponding cell type’s expression. Note that some of
the single cell clusters with the best apparent cell type matches (e.g., cluster 15/TmY5a, cluster 55/Mi15) were originally reported with a different
annotation. B. Expression of marker genes for each brain single cell cluster (as reported in Davie et al., 2018), as in A.

FIGURE 5 - Supplemental 3
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Figure 5-S3: kn-GAL4 expression. A. kn-GAL4 driven expression of a membrane-targeted GFP (green) in the optic lobe. Single confocal section
with a reference marker (anti-Brp) in magenta. TmY 14 cell bodies are unusual in that they are found only in a subregion of the medulla cell body rind
(see http://flweb. janelia.org/cgi-bin/view_flew_imagery.cgi?line=R10G02 for an image of a GAL4 line that in the optic lobe expresses
mainly in TmY14). Both the cell body distribution and optic lobe layer pattern (compare cells in (C)) indicate that kn-GAL4 is expressed in optic
lobe cell types other than TmY14. B. Stochastic labeling of kn-GAL4 neurons using MCFO. A TmY5a cell and an LC4 cell are indicated. Other cell
types, including several TmY14, are also labeled. Image shows a single confocal section without a reference marker. C,D. Examples of TmY14
(C) and TmY5a (D) cells. Reconstructed views generated from confocal stacks of MCFO-labeled cells using the indicated driver lines.

43 of 45



http://flweb.janelia.org/cgi-bin/view_flew_imagery.cgi?line=R10G02
http://dx.doi.org/10.1101/385476

bioRxiv preprint first posted online Aug. 5, 2018; doi: http://dx.doi.org/10.1101/385476. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

FIGURE 6 - Supplemental 1
A Transcription factors correlated with neurotransmitter output
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Figure 6-S1: Transcriptional regulators of neurotransmitter identity. A. Transcription factors whose expression is predictive of neurotransmitter
phenotype (i.e., P(neurotransmitter output | transcription factor expressed)). The ten most predictive transcription factors are shown for each neu-
rotransmitter output marker. B. Summary of orthologous transcription factors in worm and mouse and their association with specific neurotransmitter
types. C. The Gad1-associated gene Lim3 does not express in cholinergic Dm12 neurons, but does in the GABA-ergic Dm10 neurons. Double
labeling using LexA-markers for Dm12 and Dm10 (green) with a Lim3 protein-trap-GAL4 driving RFP (magenta). This example highlights a case
where Lim3 expression identifies a cell type in a group of similar cells (the Dm cells profiled in this study) that is GABAergic (all other Dms in this
group are glutamatergic.)
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Figure 7-S1: Patterns of neurotransmitter receptor expression complement connectomics. A. Transcriptomes reveal the neurotransmitters in
core cell types of the ON and OFF components of the motion detection pathway. The ON and OFF motion detection pathways supply inputs to
directionally sensitive T4 and T5 neurons, respectively (Takemura et al., 2017; Shinomiya et al., 2019). Our results show that all of the inputs
to T5 (Tm1, Tm2, Tm4, and Tm9) are cholinergic, whereas the inputs to T4 are a mixture of GABAergic (C3, Mi4), cholinergic (Mi1, Tm3), and
glutamatergic (Mi9), suggesting different input signs. Discovering the functional signs of inputs to the directionally selective neurons is an essential
step in understanding the mechanism of this long-studied neuronal computation (Strother et al., 2017). In addition, our data reveals aspects of the
motion pathway that have not yet been functionally examined, such as the identification of other signaling components (see B). B. Examples of the
expression of genes involved in neuropeptide, non-canonical small molecule (nitric oxide), or gap junction communication in the cell types in (A).
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