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Structures of macromolecular complexes are necessary for a

mechanistic description of biochemical and cellular processes.

They can be solved by experimental methods, such as X-ray

crystallography, NMR spectroscopy and electron microscopy,

as well as by computational protein structure prediction,

docking and bioinformatics. Recent advances and applications

of these methods emphasize the need for hybrid approaches

that combine a variety of data to achieve better efficiency,

accuracy, resolution and completeness.
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Introduction
Genome sequencing has provided nearly complete lists of

the macromolecules present in many organisms (e.g.

[1,2]). However, these lists reveal comparatively little

about the function of biological systems because the

functional units of cells are often complex assemblies

of several macromolecules [3]. Such complexes vary

widely in their activity and size [3–7], and play crucial

roles in most cellular processes. They are often depicted

as molecular machines [3], a metaphor that accurately

captures many of their characteristic features, such as

modularity, complexity, cyclic functions and energy con-

sumption [8]. For instance, the nuclear pore complex, a

50–100 MDa protein assembly, regulates and controls the

trafficking of macromolecules through the nuclear envel-

ope [9]; the ribosome is responsible for protein biosynth-

esis; RNA polymerase catalyzes the formation of RNA

[10]; and ATP synthase catalyzes the formation of ATP

[7]. Macromolecular assemblies are also involved in tran-

scription control (e.g. the IFNb enhanceosome) [6,11]

and the regulation of cellular transport (e.g. microtubulins

in complex with the molecular motors myosin or kinesin)

[12–14], and are crucial components in neuronal signaling

(e.g. the post-synaptic density complexes) [15]. A struc-

tural description of the protein interactions within such

complexes is an important step toward a mechanistic

understanding of biochemical, cellular and higher order

biological processes [16–18,19�].

There are currently about 12 000 known structures, from

a variety of organisms, of assemblies involving two or

more protein chains (http://pqs.ebi.ac.uk/pqs-doc.shtml)

(April 2004) [20]; these complexes can be organized into

about 3500 groups based on sequence similarity [19�].
Just how many complexes exist in a particular proteome

is not easy to deduce because of the different component

types (e.g. proteins, nucleic acids, nucleotides, metal

ions) and the varying life span of the complexes (e.g.

transient complexes, such as those involved in signaling,

and stable complexes, such as the ribosome). Until

recently, the most comprehensive information about

protein–protein interactions was available for the Sac-
charomyces cerevisiae proteome, consisting of approx-

imately 6200 proteins. This information has been pro-

vided by methods such as the yeast two-hybrid system

and affinity purification followed by mass spectrometry

[21–27,28�,29]. The lower bound on binary protein inter-

actions and functional links in yeast has been estimated

to be in the range of approximately 30 000 [30,31]; this

number corresponds to about nine protein partners per

protein, although not necessarily all direct or interacting at

the same time. The human proteome may have an order

of magnitude more complexes than the yeast cell and the

number of different complexes across all relevant genomes

may be several times larger still. Therefore, there may be

thousands of biologically relevant macromolecular com-

plexes whose structures are yet to be characterized [32].

We review here recent developments in the experimental

and computational techniques that have allowed structural

biology to shift its focus from the structures of individual

proteins to the structures of large assemblies [19�,33,34].

We also illustrate these developments by listing their

application to the determination of the structure of specific

assemblies of biological importance. In contrast to struc-

ture determination of individual proteins, structural char-

acterization of macromolecular assemblies usually poses a

more difficult challenge. We stress that a comprehensive

structural description of large complexes generally requires

the use of several experimental methods, underpinned by a

variety of theoretical approaches to maximize efficiency,

completeness, accuracy and resolution [19�,35].
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X-ray crystallography and NMR
spectroscopy
X-ray crystallography has been the most prolific techni-

que for the structural analysis of proteins and protein

complexes, and is still the ‘gold standard’ in terms of

accuracy and resolution (Figure 1a). Structures of several

macromolecular assemblies have recently been solved by

X-ray crystallography: RNA polymerase [36], the riboso-

mal subunits [37–41], the complete ribosome and its

functional complexes [42], the proteasome [43], the

GroEL chaperonin [44], various complexes of the cellular

transport machinery [12,13], the Arp2/3 complex [45],

photosystem I and the light-harvesting complex of photo-

system II [46,47], the SRP (signal recognition particle)

complex involved in nascent protein targeting [48�], and

various viral capsid and virion structures [49–51]. How-

ever, the number of structures of macromolecular assem-

blies solved by X-ray crystallography is still quite small

compared to that of the individual proteins and it will

probably be many years before we have a complete

repertoire of high-resolution structures for the hundreds

of complexes in a typical cell. This discrepancy is due

mainly to the difficult production of sufficient quantities

of the sample and its crystallization.

NMR spectroscopy allows the determination of atomic

structures of ever-larger subunits and even their com-

plexes [52–54]. Increasingly, it is used to identify residues

involved in protein interactions (Figure 1b) [55–58].

Recent technical advances have allowed its application

to systems as large as the 900 kDa GroEL–GroES com-

plex [52]. Also, it was recently used to describe structural

differences between interactions among different LIM

and SH3 domains [59].

Electron microscopy and electron
tomography
There are several variants of electron microscopy (EM),

including single-particle EM (Figure 1c) [60], electron

tomography (Figure 1d) [61] and electron crystallography

of regular two-dimensional arrays of the sample [62].

For particles with molecular weights greater than

200–500 kDa, single-particle cryo-EM can determine the

Figure 1

Methods for the structural characterization of macromolecular assemblies. (a) Electron diffraction map and three-dimensional structure of the

bacterial degradosome component PNPase (polyribonucleotide phosphorylase) determined by X-ray crystallography [183]. X-ray crystallography

integrates the diffraction patterns collected after bombarding a crystallized protein or complex with X-rays to construct its three-dimensional

structure. In principle, there is no size limit on the structures studied using this technique, although it is often difficult to obtain sufficient

material for crystallization. This technique provides atomic-resolution structures and thus molecular details of how the interactions between the

different components occur. (b) Three-dimensional structure and plot showing chemical shifts upon association of the human survival motor

neuron (SMN) tudor domain solved by NMR spectroscopy [184]. NMR spectroscopy extracts distances between atoms by measuring transitions

between different nuclear spin states within a magnetic field. These distances are then used as restraints to build three-dimensional structures.

NMR spectroscopy also provides atomic-resolution structures, but is generally limited to proteins of about 300 residues. It plays an increasingly

important role in studying interaction interfaces between structures determined independently. (c) EM micrograph and three-dimensional

reconstruction of adeno-associated virus type 2 empty capsids [185]. EM is based on the analysis of images of stained particles. Different

views and conformations of the complexes are trapped and thus thousands of images have to be averaged to reconstruct the three-dimensional

structure. Classical implementations were limited to a resolution of 20 Å. More recently, single-particle cryo techniques, whereby samples are fast

frozen before study, have reached resolutions as high as approximately 6 Å. EM provides information about the overall shape and symmetry of

macromolecules. (d) Slice images and rendered surface of a ribosome-decorated portion of endoplasmic reticulum [73]. In electron tomography,

the specimen studied is progressively tilted upon an axis perpendicular to the electron beam. A set of projection images is then recorded and
used to build a three-dimensional model. This technique can tackle large organelles or even complete cells without perturbing their physiological

environment. It provides shape information at resolutions of approximately 30 Å and promises to reach higher resolutions soon. (e) Yeast two-hybrid

array screen and small network of interacting proteins [124��,186]. Interaction discovery comprises many different methods whose objective

is to determine spatial proximity between proteins. These include techniques such as the two-hybrid system, affinity purification, FRET,

chemical cross-linking, footprinting and protein arrays. These methods provide very limited structural information and no molecular details.

Their strength is that they often give a quasi-comprehensive list of protein interactions and the networks they form.
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electron density of an assembly at resolutions as high as

approximately 5 Å [63�,64–66,67�,68�,69,70�]. The full

three-dimensional structure of the particle is recon-

structed from many two-dimensional projections of the

specimen, each showing the object from a different angle.

Imaging by cryo-EM requires neither large quantities of

the sample nor the sample in a crystalline form. There-

fore, single-particle cryo-EM is a powerful tool to inves-

tigate the structure and dynamics of macromolecular

assemblies for which X-ray structure determination is

very difficult. Although it is generally impossible to build

atomic models solely from cryo-EM density maps, the

maps give valuable insights into the structure and

mechanism of large complexes (e.g. [63�]). They are

particularly useful when combined with atomic-resolu-

tion structures of the subunits, as reviewed in the section

on hybrid methods below.

One of the most exciting developments in structural

biology is the new generation of tomography methods

based on multiple tilted views of the same object [33,71].

Although electron tomography can be used to study the

structures of isolated macromolecular assemblies at a

relatively low resolution of a few nanometers, its true

potential lies in visualizing the assemblies in an unper-

turbed cellular context [72]. These data sets provide

fascinating three-dimensional images of entities as large

as a small cell at approximately 5 nm resolution [73]. To

widen the scope of cellular tomography, it is necessary to

improve the resolution of the tomographic images, as

well as identify the structures in these images [73–75].

Theoretical considerations [76] and ongoing improve-

ments in the instrumentation make a resolution as high

as 2 nm a realistic goal [77].

Low-resolution experimental methods
Several experimental techniques can provide structural

information about protein interactions at low resolution

(Figure 1e). This information may be used to infer the

configuration of the proteins in a complex. Methods

for the mapping of protein interactions may provide

contact or proximity restraints for pairs of proteins that

are useful in the modeling of higher order complexes.

Such methods include new implementations of the two-

hybrid system [78–81], tagged affinity chromatography

[82�,83] and the combination of phage display with other

techniques [84], such as synthesis of peptides on cellu-

lose membranes (SPOT) [85��]. Because of the low-

resolution nature of these biochemical characterizations,

care is needed in their interpretation. For example,

comparing biochemically derived interaction sets against

known three-dimensional structures of complexes

revealed potential sources of systematic errors in inter-

action discovery, such as indirect interactions in two-

hybrid systems, the obstruction of interfaces by mole-

cular labels and artificial promiscuity in the detected

interactions (Figure 2) [86].

Biophysical, biochemical and molecular biology methods

can also be used to derive low-resolution information

about the relative position and orientation of domains

in a larger complex. These methods include: site-directed

mutagenesis, which can identify the residues that med-

iate the interaction [87]; various forms of footprinting,

such as hydrogen-deuterium exchange [88,89�] and

hydroxyl radical footprinting [90], which can identify

surfaces buried upon complex formation; chemical cross-

linking [91–93], which can identify interacting residues;

fluorescence resonance energy transfer (FRET) [94,95],

which can determine the distance between labeled

groups on the interacting proteins; and Fourier transform

IR spectroscopy (FTIR), which describes structural

changes upon complex formation [96]. Small angle

X-ray scattering (SAXS) is another biophysical method

that can provide low-resolution information about the

shape of a complex. For instance, SAXS has recently

been used to study the dynamics of conformational

change in Bruton tyrosine kinase [97,98].

Computational protein–protein docking
When atomic structures of the individual proteins

involved in an interaction are known, either by experi-

ment or by modeling, several computational methods are

available that suggest the structure of the interaction [99].

Figure 2
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Examples of potential errors in biochemical interaction discovery

techniques, as revealed by a structure-based analysis [17]. (a) Indirect
interactions between cyclin-dependent kinase regulatory subunit (CKS)

and cyclin A detected by the yeast two-hybrid system. Several

interactions between CKS domains and cyclins were reported in

genome-scale two-hybrid studies [21,187]. However, analysis of three-

dimensional structures suggests that the endogenous cyclin-dependent

kinase 2 (CDK2) probably mediates the interaction, as combining the

CDK2–CKS and CDK2–cyclin A structures places the CKS and cyclin

domains 18 Å apart [86]. (b) An example of an interaction that is not

detected by any screen, possibly because molecular labels (e.g. affinity

purification tags, or two-hybrid DNA binding or activation domains) are

interfering with the interaction. The X-ray structure of the actin–profilin

complex reveals that the actin C terminus (C-t) lies at the interaction

interface (the other N and C termini are also labeled).
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Most of these docking methods aim to predict the atomic

model of a complex by maximizing the shape and che-

mical complementarity between a given pair of interact-

ing proteins [99–102]. Docking strategies usually rely on a

two-stage approach: they first generate a set of possible

orientations of the two docked proteins and then score

them in the hope that the native complex will be ranked

highly. Katchalski-Katzir, Vakser and co-workers [103]

have pioneered a fast Fourier transform (FFT)-based

method for rapidly searching through the space of possi-

ble docked configurations. Due to its computational

efficiency, it has also been incorporated into programs

such as FTDock and 3D-Dock [104–106], GRAMM

[107], DOT [108], ZDOCK [109] and HEX [110]. Other

docking programs include ICM [111] and ROSETTA

[112]. The searches may be restrained by other consid-

erations, such as the known binding site location. These

methods differ in protein representation, in the scoring of

different configurations and in the search for the best

solutions. Some methods boldly model the actual diffu-

sion/collision trajectories involved in the docking process

[113,114].

Although docking methods are not sufficiently accurate to

predict whether or not two proteins actually interact with

each other, they can sometimes correctly identify the

interacting surfaces between two structurally defined

subunits [115]. Docking methods are systematically

assessed through blind trials in the Critical Assessment

of PRedicted Interactions (CAPRI) [101,116�,117]. Pre-

dictions are made just before the structures are solved

experimentally, followed by the assessment of the models

at the CAPRI meetings. The best of the methods

assessed in the last CAPRI experiment correctly pre-

dicted three of the seven target complexes [116�].

Methods that are able to work with comparative protein

structure models [118] instead of experimentally deter-

mined subunit structures would extend the applicability

of docking to many more biological problems, but would

probably have poorer performance. Currently, docking is

often applied in concert with experimental techniques,

including site-directed mutagenesis [119], amide hydro-

gen-deuterium exchange [89�] and NMR spectroscopy

[120�,121], as well as solid-state binding and surface

plasmon resonance [122].

Inferring interactions by homology
Protein interactions can also be modeled by similarity

[123,124��,125]. If a complex of known structure compris-

ing homologs of a pair of interacting proteins is available,

it is usually possible to build a model by comparative

modeling [126]. There are now approximately 2000 dis-

tinct interaction types of known structure (i.e. whereby

interacting domains sharing 30% or greater sequence

identity are considered to be a single type; P Aloy, RB

Russell, unpublished).

Building a model of the interaction between a pair of

proteins based on the known structure of the complex

between interacting homologs raises the question of

whether or not homology of the subunits implies sim-

ilarity of interaction. It was found that interactions

between proteins of the same fold tend to be similar

when the sequence identity is above approximately 30%

[127�]. Below this cutoff, there is a twilight zone where

interactions may or may not be similar geometrically.

Given a template, it is possible to model an interaction

using standard comparative modeling techniques [126].

However, frequently there are multiple templates for the

same interaction type. In addition, a single interaction

template can be used to model many putative interactions

in a single organism. Therefore, it is important to assess

the likelihood of these potential interactions, particularly

in the absence of experimental validation [128��]. For

example, each of the dozens of fibroblast growth factors

(FGFs) interacts with one or more of seven receptors

with different affinities [129]. Two approaches have been

developed recently that attempt to predict specificity by

modeling interactions. The first approach, implemented

by InterPReTS [123,130] and ModBase [125], uses

empirical pair potentials derived from interfaces of

known structure to score how well a pair of homologous

proteins fits a known complex structure. The second

approach, MULTIPROSPECTOR, is similar, although

it attempts to study more distantly related protein

sequences by threading sequences onto a library of inter-

acting templates, followed by scoring how well the indi-

vidual sequences fit their proposed folds and the interface

between them [131]. Both approaches have since been

applied to study large collections of sequences and inter-

actions [124��,125,132��].

For some large complexes, the specificity of interactions

within a family of homologous subunits is an important

determinant of complex assembly. For instance, the

chaperonin CCT consists of eight homologous subunits

that are all similar to the single subunit comprising the

thermosome [133]. Thus, building CCT using the ther-

mosome requires the conversion of a seven-subunit ring

into an eight-subunit ring, and then choosing the correct

arrangement from the 5040 (8!/8) possibilities. It is pos-

sible to guide this process by experiment, such as the

detection of subcomplexes that reveal preferred interact-

ing pairs [134] or the application of the two-hybrid system

[135]. InterPReTS was also applied to select one of the

120 possible arrangements of six exosome subunits

(Figure 3) [136], with mixed results.

In eukaryotes, many of the protein–protein interactions

in regulatory signaling networks are mediated by mod-

ular protein interaction domains. Such domains appear to

have been used in a modular fashion throughout evolu-

tion to generate novel connections between proteins.
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However, the repeated use of such domains presents the

problem of specificity: how are biologically unique con-

nections made? Experimental evidence suggests that

some of these interactions are remarkably specific [137],

whereas others show overlapping specificity [85��].
These findings highlight the need for the development

and validation [128��] of accurate computational meth-

ods that capture the structural principles of protein

interaction specificity.

Low-resolution computational methods
Even when docking or modeling is not feasible, it may

still be possible to get some structural insight into a

protein–protein interaction using other computational

approaches. Various methods combine structures with

sequence alignments and phylogenetic trees to identify

sites on the surface that are likely to be involved in

function or specificity [138–145]. Other computational

methods perform alanine scanning to identify ‘hot spots’

at known protein interfaces. A comparative analysis of

such hot spots may reveal determinants of specificity and

cross-reactivity [146–148]. There are also many computa-

tional methods for the prediction of protein–protein

interactions when no structural information is available

(see the review by Bork et al. in this section).

Hybrid methods
In the absence of atomic-resolution data, approximate

atomic models of assemblies can be derived by combining

low-resolution cryo-EM data on complete protein assem-

blies with computational docking of atomic-resolution

structures of their subunits [149–156]. It has been esti-

mated that using such fitting techniques improves the

accuracy to up to one-tenth the resolution of the original

EM reconstruction.

Hybrid approaches involving the fitting of subunits into

EM maps are illustrated by pseudo-atomic models of

the actin–myosin complex [157], the yeast ribosome

[158,159] (Figure 4), the bacteriophage T4 baseplate

[160��], pre-mRNA splicing complex SF3b [161], the

RAD51 system involved in homologous recombination

and DNA repair [162�], and complex virus structures

[163,164].

Unfortunately, experimentally determined atomic-reso-

lution structures of the isolated subunits are frequently

not available. Even when available, the induced fit can

severely limit their utility in the reconstruction of the

whole assembly. In such cases, it might be possible to get

useful models of the subunits by comparative protein

Figure 3
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Putative structure through modeling and low-resolution EM. (a) Exosome subunits. The top of the panel shows the domain organization of two

subunits present in the complex, but lacking any detectable similarity to known three-dimensional structures. The model for the nine other

subunits (bottom) was constructed by predicting binary interactions using InterPReTS [130] and building models based on a homologous

complex structure using comparative modeling. (b) EM density map (green mesh) with the best fit of the model shown as a gray surface and

the predicted locations of the subunits labeled. The question marks indicate those subunits for which no structures could be modeled.
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structure modeling [126,165–168]. The number of mod-

els that can be constructed with useful accuracy is already

two orders of magnitude greater than the number of

available experimentally determined structures. Models

with at least the correct fold can be constructed for

domains in approximately 58% of known protein

sequences [125]. Comparative modeling will be increas-

ingly more applicable and accurate because of structural

genomics initiatives [169]. One of the main goals of

structural genomics is to determine a sufficient number

of appropriately selected structures from each domain

family, such that all sequences are within modeling dis-

tance of at least one known protein structure [170,171].

Structural genomics may in fact contribute to a compre-

hensive and efficient structural description of complexes

in an additional way. Although structural genomics cur-

rently focuses on single proteins or their domains, it

could be expanded to the sampling of domain–domain

interactions [127�,172,173]. Such an effort would pro-

vide a repertoire of templates for binary interactions,

which would facilitate the building of higher order

complexes.

Although X-ray crystallography and EM in combination

with atomic structure docking have been successfully

employed to solve the structures of protein assemblies,

they are not capable of efficiently characterizing the

myriad of complexes that exist in a cell. For example,

most transient complexes cannot be addressed at all with

these approaches. Therefore, there is a great need for the

additional development of hybrid methods through which

accuracy, high throughput, completeness and resolution

are improved by integrating information from all available

sources [19�,136,174].

The dynamics of complexes
By trapping complexes in different conformations and

configurations, hybrid methods can be used to study the

functional role of assembly dynamics. For instance, mod-

els of the two different functional states of the Escherichia
coli 70S ribosome demonstrated that the complex changes

from a compact to a looser conformation, and showed

rearrangements of many of the ribosomal proteins [63�].
Similarly, T antigen double hexamers (a replicative heli-

case of simian virus 40) were assembled at the origin of

replication using 27.5 Å cryo-EM maps at different

degrees of bending along the DNA axis [175]. Fitting

the crystal structure of the Tag helicase domain [176] into

the three-dimensional cryo-EM density map ascertained

that the C-terminal domains are rotated relative to each

other in the complex. The results were combined with

the available biochemical data to propose an integrated

model for the initiation of viral DNA replication. Such a

comparison also revealed details that are key to under-

standing filament function. Fitting atomic models of actin

and the myosin cross-bridge into 14 Å cryo-EM maps

showed that the closing of the actin-binding cleft upon

actin binding is structurally coupled to the opening of the

nucleotide-binding pocket [67�].

The dynamics of assembly models can also be studied by

theoretical calculations [177–180]. A vibrational analysis

of elastic models was employed to capture the essential

motions of clamp closure in bacterial RNA polymerase,

the ratcheting of the 30S and 50S subunits of the ribo-

some, and the dynamic flexibility of chaperonin CCT

[181]. Also, a quantized elastic deformational model

provided a basis for the simulation of conformational

fluctuations related to the expansion and contraction of

the truncated E2 core from the pyruvate dehydrogenase

complex [182].

Conclusions
There is a wide spectrum of experimental and computa-

tional methods for the identification and structural char-

acterization of macromolecular complexes. These

methods need to be combined into hybrid approaches

to achieve greater accuracy, coverage, resolution and

efficiency than any of the individual methods. New

methods must be capable of generating possible alter-

native models consistent with information such as stoi-

chiometry, interaction data, homology to known struc-

tures, docking results and low-resolution images. There is

a need to describe the structures and dynamics of both

stable and transient complexes.

Structural biology is a great unifying discipline of biology.

Thus, structural characterization of many protein com-

plexes may be the way to bridge the gaps between

genome sequencing, functional genomics, proteomics

and systems biology. The goal seems daunting, but the

prize will be commensurate with the effort invested,

Figure 4

Hybrid assembly of the 80S ribosome from yeast [158]. (a) Superposition

of a comparative protein structure model (red) of a domain from

ribosomal protein L2 from Bacillus stearothermophilus with the actual

structure (blue) (PDB code 1RL2). (b) A partial molecular model of the

whole yeast ribosome calculated by fitting atomic rRNA (not shown) and

comparative protein structure models (ribbon representation) into the

electron density of the 80S ribosomal particle.
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given the importance of molecular machines and func-

tional networks in biology and medicine.
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